
Alessio Ferrari
Birgit Penzenstadler (Eds.)

LN
CS

 1
39

75 Requirements Engineering:
Foundation
for Software Quality
29th International Working Conference, REFSQ 2023
Barcelona, Spain, April 17–20, 2023
Proceedings

Lecture Notes in Computer Science 13975
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Alessio Ferrari · Birgit Penzenstadler
Editors

Requirements Engineering:
Foundation
for Software Quality
29th International Working Conference, REFSQ 2023
Barcelona, Spain, April 17–20, 2023
Proceedings

Editors
Alessio Ferrari
CNR ISTI
Pisa, Italy

Birgit Penzenstadler
Chalmers Tekniska Högskola
Gothenburg, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-29785-4 ISBN 978-3-031-29786-1 (eBook)
https://doi.org/10.1007/978-3-031-29786-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0636-5663
https://orcid.org/0000-0002-5771-0455
https://doi.org/10.1007/978-3-031-29786-1

Preface

This volume contains the papers presented at REFSQ 2023, the 29th International
Working Conference on Requirements Engineering: Foundation for Software Quality,
held on April 17–20, 2023 in Barcelona, Spain. We are very happy to report that submis-
sion numbers have gone up significantly and we are excited to host another in-person
conference after a successful edition in Birmingham, UK, this past year. The REFSQ
series was established in 1994, at first as a workshop series, and since 2010 in the “work-
ing conference” format, with ample time for presentations and substantial discussions of
each contribution. It is often considered among the major international scientific events
inRequirements Engineering, and the only one to be permanently located in Europe,with
a special connection to European industry and academia. The need for ever-increasing
levels of quality in requirements has not diminished in the 29 years since the first REFSQ;
on the contrary, requirements are pervasive in the design, implementation, and operation
of software systems and related services that impact the lives of billions. The special
theme for REFSQ 2023 was “Human Values in Requirements Engineering”. Require-
ments Engineering (RE) is at the boundary of humans and technology, and values play
a crucial role in the interplay between developers, users and systems. When developing
technology, we get to be cognizant of how our values inform our designs, because we
unconsciously embed them into our systems. In addition, we need to carefully consider
possible conflicts between human values and business values. The theme of this year
thus aimed to foster discussion around the following questions:

– How do we take care of human values in RE?
– How do we ensure that the systems we design incorporate the values we want them

to stand for?
– How do we validate and measure values?
– How do we make sure that systems serve the human as opposed to having the human

adapt to them?
– How much do developer habits and characteristics influence their designs?
– What is the interplay between developer and stakeholder values?
– What is the interplay between human values and business values?

We were very happy to observe that the challenge was promptly taken up by the
research community, with many submissions focusing on exactly those issues. Several
of those contributions were accepted for presentation at the conference, and are now
part of this volume. In response to the Call for Papers, we received 84 abstracts, which
resulted in 78 full papers, which were single-blind reviewed by three program committee
members, extensively discussed among the reviewers, and then brought for additional
discussion if needed and a final decision at the plenary program committee meeting that
was held (online) on January 17 and 18, 2023. Nine papers for which no consensus
had been reached were discussed in special depth, and all of them were accepted on
the condition that certain improvements be made (those underwent an additional check
by a PC member before final acceptance). Overall, 25 papers were finally accepted for

vi Preface

publication, and are now collected in this volume. In particular, based on paper category,
the acceptance ratios are as follows:

– Scientific Evaluation (17 pages): 20 submissions, 7 accepted (35%)
– Technical Design (17 pages): 22 submissions, 5 accepted (23%)
– Experience report papers (14 pages): 14 submissions, 5 accepted (36%)
– Vision (10 pages): 3 submissions, 2 accepted (67%)
– Research Preview (10 pages): 14 submissions, 6 accepted (43%)

The acceptance rate of full contributions was thus 29% (12/42). As in previous
years, the conference was organized as a three-day symposium (Tuesday to Thursday),
with one day devoted to industrial presentations (in a single track), and two days of
academic presentations (in two parallel tracks). In addition to paper presentations and
related discussions, the program included two keynote talks byBarbara Paech andKlaas-
Jan Stol; a Poster & Tools session organised by Sallam Abualhaija and Oliver Karras;
a Journal Early-Feedback track, organized by Paola Spoletini and Daniel Amyot; and
awards to recognize the best contributions in various categories. On the Monday before
the conference, four co-located events were held:

– NLP4RE: 6th Workshop on Natural Language Processing for Requirements Engi-
neering, organized by Sallam Abualhaija, Andreas Vogelsang and Gouri Deshpande;

– RE4AI: 4th InternationalWorkshop on Requirements Engineering for Artificial Intel-
ligence, organized by Renata Guizzardi, Jennifer Horkoff, Anna Perini and Angelo
Susi;

– ViVA RE!: 1st Workshop on Virtues and Values in Requirements Engineering,
organized by Alexander Rachmann and Jens Gulden;

– REFrame: 1st Workshop on Requirements Engineering Frameworks, organized by
Andrea Wohlgemuth, Anne Hess and Samuel Fricker;

– REFSQ Doctoral Symposium, organized by Fabiano Dalpiaz and Ana Moreira.

The proceedings of the co-located events and the Poster & Tools track are published
in a separate volume via CEUR.Wewould like to thank all members of the Requirements
Engineering community who prepared a contribution for REFSQ 2023: there would be
no progress in our discipline without the talent, intelligence and effort that so many
brilliant researchers dedicated to the field. We would also like to thank members of the
Program Committee and additional reviewers for their invaluable contribution to the
selection process. Special thanks are due to all the colleagues that served in various
distinguished roles in the organization of REFSQ 2023; your help in assembling a rich
program has been invaluable:

– The REFSQ Steering Committee has provided excellent support and guidance
throughout the process;

– The previous PC chairs, who happily shared their experiences;
– The Local Organizers Carles Farré and Carme Quer;
– The Steering Committee Chair Anna Perini and Vice-Chair Fabiano Dalpiaz, and
– The head of the Background Organization, Xavier Franch, for making our regu-

lar organizational meetings so enjoyable that we almost looked forward to each
subsequent one with pleasurable anticipation.

Preface vii

Last but not least, we would like to thank you, the reader. You are the reason for this
volume to exist. We hope you will find its contents interesting, useful, stimulating and
inspirational.

February 2023 Alessio Ferrari
Birgit Penzenstadler

Organization

Program Committee Chairs

Alessio Ferrari Consiglio Nazionale delle Ricerche, Italy
Birgit Penzenstadler Chalmers Tekniska Högskola, Sweden and

Lappeenranta University of Technology,
Finland

Local Organization Chairs

Carles Farré Universitat Politècnica de Catalunya, Spain
Carme Quer Universitat Politècnica de Catalunya, Spain

Industry Track Chairs

Joan Antoni Pastor Universitat Politècnica de Catalunya, Spain
Krzysztof Wnuk Blekinge Institute of Technology, Sweden

Workshop Chairs

Irit Hadar University of Haifa, Israel
Shola Oyedeji Lappeenranta University of Technology, Finland

Journal Early Feedback Chairs

Paola Spoletini Kennesaw State University, USA
Daniel Amyot University of Ottawa, Canada

Posters and Tools Chairs

Sallam Abualhaija University of Luxembourg, Luxembourg
Oliver Karras Leibniz Information Centre for Science and

Technology, Germany

x Organization

Doctoral Symposium Chairs

Fabiano Dalpiaz Utrecht University, The Netherlands
Ana Moreira NOVA University of Lisbon and NOVA LINCS,

Portugal

Most Influential Paper Chair

Martin Glinz University of Zurich, Switzerland

Social Media and Publicity Chairs

Muhammad Abbas RISE Research Institutes of Sweden AB, Sweden
Quim Motger Universitat Politècnica de Catalunya, Spain

Web Chair

Quim Motger Universitat Politècnica de Catalunya, Spain

Student Volunteer Chair

Claudia Ayala Universitat Politècnica de Catalunya, Spain

Proceedings Chair

Giorgio O. Spagnolo Consiglio Nazionale delle Ricerche, Italy

Local Organization Members

Dolors Costal Universitat Politècnica de Catalunya, Spain
Cristina Gómez Universitat Politècnica de Catalunya, Spain
Rediana Koçi Universitat Politècnica de Catalunya, Spain

Organization xi

REFSQ Series Organization

Steering Committee

Anna Perini (Chair) Fondazione Bruno Kessler, Italy
Fabiano Dalpiaz (Vice-chair) University of Utrecht, The Netherlands
Xavier Franch (Chair of BO) Universitat Politècnica de Catalunya, Spain
Alessio Ferrari Consiglio Nazionale delle Ricerche, Italy
Birgit Penzenstadler Chalmers Tekniska Högskola, Sweden and

Lappeenranta University of Technology,
Finland

Paola Spoletini Kennesaw State University, USA
Nazim Madhavji Western University, Canada
Michael Goedicke University of Duisburg-Essen, Germany
Vincenzo Gervasi University of Pisa, Italy
Andrea Vogelsang University of Cologne, Germany
Klaus Pohl University of Duisburg-Essen, Germany
Eric Knauss Chalmers Tekniska Högskola, Sweden
Daniel Méndez Fernández Blekinge Institute of Technology, Sweden
Ana Moreira NOVA University of Lisbon and NOVA LINCS,

Portugal

Background Organization

Xavier Franch (Chair) Universitat Politècnica de Catalunya, Spain
Carme Quer Universitat Politècnica de Catalunya, Spain
Quim Motger Universitat Politècnica de Catalunya, Spain

Program Committee

Sallam Abualhaija University of Luxembourg, Luxembourg
Carina Alves Universidade Federal de Pernambuco, Brazil
Daniel Amyot University of Ottawa, Canada
Chetan Arora Deakin University, Australia
Fatma Başak Aydemir Boğaziçi University, Turkey
Nelly Bencomo Durham University, UK
Dan Berry University of Waterloo, Canada
Stefanie Betz Furtwangen University, Germany
Travis Breaux Carnegie Mellon University, USA
Sjaak Brinkkemper Utrecht University, The Netherlands
Nelly Condori-Fernández Universidad de Santiago de Compostela, Spain

xii Organization

Fabiano Dalpiaz Utrecht University, The Netherlands
Maya Daneva University of Twente, The Netherlands
Joerg Doerr Fraunhofer, Germany
Xavier Franch UPC, Spain
Samuel A. Fricker FHNW, Switzerland
Davide Fucci University of Hamburg, Germany
Matthias Galster University of Canterbury, New Zealand
Vincenzo Gervasi University of Pisa, Italy
Martin Glinz University of Zurich, Switzerland
Michael Goedicke Univ. Duisburg-Essen, Germany
Eduard C. Groen Fraunhofer IESE, Germany
Paul Grünbacher Johannes Kepler University Linz, Austria
Renata Guizzardi University of Twente, The Netherlands
Andrea Herrmann Free Software Engineering Trainer, Germany
Anne Hess Fraunhofer, Germany
Jennifer Horkoff Chalmers University of Technology and

University of Gothenburg, Sweden
Erik Kamsties University of Applied Sciences and Arts

Dortmund, Germany
Eric Knauss Chalmers University of Technology and

University of Gothenburg, Sweden
Sylwia Kopczyńska Poznan University of Technology, Poland
Kim Lauenroth adesso AG, Germany
Emmanuel Letier University College London, UK
Grischa Liebel Reykjavik University, Iceland
Nazim Madhavji University of Western Ontario, Canada
Daniel Méndez Fernández Blekinge Institute of Technology, Sweden
Luisa Mich University of Trento, Italy
Lloyd Montgomery University of Hamburg, Germany
Gunter Mussbacher McGill University, Canada
John Mylopoulos University of Ottawa, Canada
Nan Niu University of Cincinnati, USA
Andreas L. Opdahl University of Bergen, Norway
Shola Oyedeji LUT University, Finland
Barbara Paech Universität Heidelberg, Germany
Elda Paja IT University of Copenhagen, Denmark
Liliana Pasquale University College Dublin, Ireland
Oscar Pastor Universidad Politécnica de Valencia, Spain
Anna Perini Fondazione Bruno Kessler, Italy
Bjorn Regnell Lund University, Sweden
Marcela Ruiz Zurich University of Applied Sciences,

Switzerland

Organization xiii

Mehrdad Sabetzadeh University of Ottawa, Canada
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Laura Semini University of Pisa, Italy
Norbert Seyff FHNW, Switzerland
Paola Spoletini Kennesaw State University, USA
Jan-Philipp Steghöfer XITASO GmbH IT & Software Solutions,

Germany
Angelo Susi Fondazione Bruno Kessler, Italy
Colin C. Venters University of Huddersfield, UK
Michael Vierhauser Johannes Kepler University Linz, Austria
Andreas Vogelsang University of Cologne, Germany
Liping Zhao University of Manchester, UK
Didar Zowghi CSIRO’s Data61, Australia

Additional Reviewers

Anders, Michael
Fotouhi, Sara
Heyn, Hans-Martin
Jeswein, Thomas
Koch, Matthias
Ly, Delina
Molenaar, Sabine
Oriol Hilari, Marc

Passaro, Lucia
Patkar, Nitish
Radeck, Leon
Ramautar, Vijanti
Rohmann, Astrid
Samin, Huma
Scherr, Simon André
van Dijk, Friso

Supporting Institutions, Companies and Groups

xiv Organization

Contents

Requirements Communication and Conceptualization

Requirements Engineering Issues Experienced by Software Practitioners:
A Study on Stack Exchange . 3

Sávio Freire, Felipe Gomes, Larissa Barbosa, Thiago Souto Mendes,
Galdir Reges, Rita S. P. Maciel, Manoel Mendonça, and Rodrigo Spínola

An Empirical Study of the Intuitive Understanding of a Formal Pattern
Language . 21

Elisabeth Henkel, Nico Hauff, Lukas Eber, Vincent Langenfeld,
and Andreas Podelski

Supporting Shared Understanding in Asynchronous Communication
Contexts . 39

Lukas Nagel, Oliver Karras, Seyed Mahdi Amiri, and Kurt Schneider

Bringing Stakeholders Along for the Ride: Towards Supporting Intentional
Decisions in Software Evolution . 56

Alicia M. Grubb and Paola Spoletini

Understanding the Role of Human-Related Factors in Security
Requirements Elicitation . 65

Sanaa Alwidian and Jason Jaskolka

Scope Determined (D) and Scope Determining (G) Requirements: A New
Categorization of Functional Requirements . 75

Daniel M. Berry,Márcia Lucena, Victoria Sakhnini, andAbhishek Dhakla

NLP and Machine Learning for AI

Using Language Models for Enhancing the Completeness
of Natural-Language Requirements . 87

Dipeeka Luitel, Shabnam Hassani, and Mehrdad Sabetzadeh

Requirement or Not, That is the Question: A Case from the Railway Industry . . 105
Sarmad Bashir, Muhammad Abbas, Mehrdad Saadatmand,
Eduard Paul Enoiu, Markus Bohlin, and Pernilla Lindberg

xvi Contents

Summarization of Elicitation Conversations to Locate
Requirements-Relevant Information . 122

Tjerk Spijkman, Xavier de Bondt, Fabiano Dalpiaz,
and Sjaak Brinkkemper

Ontology-Based Automatic Reasoning and NLP for Tracing Software
Requirements into Models with the OntoTrace Tool . 140

David Mosquera, Marcela Ruiz, Oscar Pastor, and Jürgen Spielberger

Requirements Classification Using FastText and BETO in Spanish
Documents . 159

María-Isabel Limaylla-Lunarejo, Nelly Condori-Fernandez,
and Miguel R. Luaces

RE for Artificial Intelligence

Exploring Requirements for Software that Learns: A Research Preview 179
Marie Farrell, Anastasia Mavridou, and Johann Schumann

Requirements Engineering for Automotive Perception Systems:
An Interview Study . 189

Khan Mohammad Habibullah, Hans-Martin Heyn, Gregory Gay,
Jennifer Horkoff, Eric Knauss, Markus Borg, Alessia Knauss,
Håkan Sivencrona, and Jing Li

An Investigation of Challenges Encountered When Specifying Training
Data and Runtime Monitors for Safety Critical ML Applications 206

Hans-Martin Heyn, Eric Knauss, Iswarya Malleswaran,
and Shruthi Dinakaran

A Requirements Engineering Perspective to AI-Based Systems
Development: A Vision Paper . 223

Xavier Franch, Andreas Jedlitschka, and Silverio Martínez-Fernández

Out-of-Distribution Detection as Support for Autonomous Driving Safety
Lifecycle . 233

Jens Henriksson, Stig Ursing, Murat Erdogan,
Fredrik Warg, Anders Thorsén, Johan Jaxing, Ola Örsmark,
and Mathias Örtenberg Toftås

Crowd RE

Automatically Classifying Kano Model Factors in App Reviews 245
Michelle Binder, Annika Vogt, Adrian Bajraktari, and Andreas Vogelsang

Contents xvii

Data-Driven Persona Creation, Validation, and Evolution . 262
Nitish Patkar and Norbert Seyff

Towards a Cross-Country Analysis of Software-Related Tweets 272
Saliha Tabbassum, Ricarda Anna-Lena Fischer, and Emitza Guzman

Integrating Implicit Feedback into Crowd Requirements
Engineering – A Research Preview . 283

Leon Radeck and Barbara Paech

RE in Practice

Authoring, Analyzing, andMonitoringRequirements for a Lift-Plus-Cruise
Aircraft . 295

Tom Pressburger, Andreas Katis, Aaron Dutle, and Anastasia Mavridou

Knowns and Unknowns: An Experience Report on Discovering Tacit
Knowledge of Maritime Surveyors . 309

Tor Sporsem, Morten Hatling, Anastasiia Tkalich, and Klaas-Jan Stol

Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design 324
Diane Hassett, Amel Bennaceur, and Bashar Nuseibeh

A Product Owner’s Navigation in Power Imbalance Between Business
and IT: An Experience Report . 337

Lotte Mygind, Jens Bæk Jørgensen, and Lutz Prechelt

Eliciting Security Requirements – An Experience Report . 351
Roman Trentinaglia, Sven Merschjohann, Markus Fockel,
and Hendrik Eikerling

Author Index . 367

Requirements Communication
and Conceptualization

Requirements Engineering Issues Experienced
by Software Practitioners: A Study on Stack

Exchange

Sávio Freire1,2 , Felipe Gomes1 , Larissa Barbosa1, Thiago Souto Mendes3 ,
Galdir Reges4 , Rita S. P. Maciel1 , Manoel Mendonça1 ,

and Rodrigo Spínola4,5(B)

1 Federal University of Bahia, Salvador, Bahia, Brazil
savio.freire@ifce.edu.br, {felipe.gustavo,larissa.leoncio,

rita.suzana,manoel.mendonca}@ufba.br
2 Federal Institute of Ceará, Morada Nova, Ceará, Brazil

3 Federal Institute of Bahia, Salvador, Bahia, Brazil
thiagosouto@ifba.edu.br

4 Salvador University, Salvador, Bahia, Brazil
galdir.reges@unifacs.br, spinolaro@vcu.edu
5 Virginia Commonwealth University, Richmond, VA, USA

Abstract. [Context and Motivation] Requirements engineering (RE) is central
to software development. Despite its importance, there are many issues related
to its enactment. Question and answer platforms, such as the Stack Exchange,
are paramount in contemporary software development. They discuss and bring
to light practitioners’ viewpoints on software engineering issues. Approaching
those platforms focusing on RE deserves investigation because it can reveal cur-
rent issues experienced by software practitioners and possible solutions for them.
[Question/Problem] This work investigates RE issues, their causes, effects, and
possible solutions as discussed by software practitioners in the Software Engi-
neering Stack Exchange (SWESE). For that, we mine, curate, and analyze a set of
61 discussions related to RE, composed of 414 posts and 770 comments extracted
from SWESE. [Principal Ideas/Results]We identify 50 issues and their relations
with requirements phases. Customers’ unable to describe system requirements
and the need for detailed specifications are among the most commonly discussed
issues. We also list 20 causes, 23 effects, and 59 solutions for the mined issues.
Examples of causes for RE issues are lack of technical knowledge and commu-
nication issues. Examples of the effects of RE issues are rework and unstable
requirements. Solutions encompass practices such as clearly defining require-
ments and using prototypes. [Contribution] This work organizes the mined RE
issues in a Sankey diagram, relating them to RE phases and solutions, which may
assist practitioners experiencing them and serve as guidance for future research.

Keywords: Requirements Engineering Issues · Question and Answer Platform ·
Stack Exchange

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 3–20, 2023.
https://doi.org/10.1007/978-3-031-29786-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_1&domain=pdf
http://orcid.org/0000-0002-3989-9442
http://orcid.org/0000-0002-9678-254X
http://orcid.org/0000-0003-1919-5349
http://orcid.org/0000-0002-5665-085X
http://orcid.org/0000-0003-3159-6065
http://orcid.org/0000-0002-0874-7665
http://orcid.org/0000-0003-0272-9578
https://doi.org/10.1007/978-3-031-29786-1_1

4 S. Freire et al.

1 Introduction

Requirements engineering (RE) refers to discovering the system’s purpose by identifying
stakeholders’ needs and documenting them to be used in other software development
phases [1]. There are many issues inherent to RE processes; for instance, stakeholders’
goals may vary and conflict, not be explicit, or maybe challenging to articulate [1, 2].
Knowing such issues and possible solutions to them is necessary to support software
teams in improving their chances of success.

Several studies have investigated RE issues experienced by software practitioners
[2–9]. After conducting a mapping study, Pekar et al. [6] identified that ambiguity is the
main issue in requirements. By surveying software practitioners, researchers from the
Naming the Pain in Requirements Engineering (NaPiRE) project identified issues and
their causes and effects [2]. The most commonly mentioned issues and some of their
respective causes and effects were incomplete or hidden requirements, (cause) lack of
experience of RE team members, (cause)weak qualification of RE team members, (effect)
time overrun, and (effect) poor product quality. Bonfim and Benitti [9] interviewed 19
agile software practitioners to investigate causes, effects, and mitigation practices for
requirements debt, i.e., the distance between the optimal requirements specification
and the actual system implementation [10]. Examples of identified causes, effects, and
mitigation practices are requirements specification failure, requirements not met and
realized post-delivery, and assessing the impact of technical debt, respectively.

Despite current work on the area, to the best of our knowledge, no work has analyzed
discussions focused on RE in Question and Answer (Q&A) platforms, such as the Stack
Exchange. The number of studies performed on it illustrates the importance of such plat-
forms in investigating the state of the practice in software engineering [11]. For instance,
there are investigations on the areas of development trends [12], code smells [13], soft
skills [14], and technical debt [15–17]. Those platforms are paramount in contempo-
rary software development because countless issues are discussed, bringing to light the
practitioners’ points of view on possible solutions for those issues [18]. Moreover, Q&A
platforms are a rich source of information on professional practices compared to other
sources such as surveys, interviews, and literature reviews [19]. They allow researchers
to learn directly from the sharing of practitioners’ knowledge. Approaching them focus-
ing on RE issues deserves investigation because it can reveal new issues and possible
solutions for them.

This work investigates RE issues and their causes, effects, and possible solutions,
as discussed by software practitioners in the Software Engineering Stack Exchange
(SWESE). We mined, curated, and analyzed a set of 61 discussions related to RE,
composed of 414 posts and 770 comments. By analyzing this data set quantitatively and
qualitatively, we found 50 RE issues. We also identified 20 causes, 23 effects, and 59
solutions for those issues. Lastly, we organized the relations between issues, RE phases,
and solutions in a Sankey diagram.

Software practitioners can use the organized set of issues, causes, effects, and solu-
tions to increase their capability to dealwithRE issues. By navigating through the Sankey
diagram, software teams can identify which issues commonly affect each RE phase and

Requirements Engineering Issues Experienced by Software Practitioners 5

which solutions they can employ to solve them, learning from other practitioners’ expe-
riences. Researchers can use our findings to develop methods and tools to improve the
RE process considering practitioners’ needs.

This paper is organized into six other sections. Section 2 discusses related work.
Section 3 presents the research strategy. Section 4 shows the results reached. Section 5
offers a Sankey diagram encompassing RE issues and their associated solutions and
compares our findings to ones reported by related work. Section 6 discusses the threats
to validity. Lastly, Sect. 7 presents our work’s final remarks and next steps.

2 Related Work

Several studies have investigated issues in RE. Nikula et al. [3] surveyed 15 software
practitioners from 12 Finnish companies to explore current RE practices, develop-
ment needs, and preferred ways of technology transfer. Solemon et al. [4] surveyed 64
Malaysian software practitioners to identify problems in requirements activities, reveal-
ing that the problems are related to organizational structure and process. Liu et al. [5]
surveyed 377 Chinese software practitioners to recognize their practices in requirements
activities. Pekar et al. [6] conducted a mapping study to identify requirements issues and
solutions. The authors recognized that the main issue is ambiguity and reported a set of
nine solutions.

Another related work is the NaPiRE project [2]. By conducting a survey, the project
analyzed answers from 228 companies, revealing the ten most cited problems in RE.
Among them, incomplete and/or hidden requirements was commonly cited. Also, the
authors identified leading causes (such as lack of time and lack of experience of RE team
members) and related them to effects.

RE issues have also been investigated from the perspective of requirements and doc-
umentation debt. The former refers to the distance between optimal requirements speci-
fication and the actual system implementation (e.g., requirements that are only partially
implemented). The latter is associated with problems in software project documenta-
tion (e.g., missing documentation) [10]. Rios et al. [7] investigated the causes, effects,
and practices to prevent and repay documentation debt items. The authors analyzed
39 answers from the InsighTD project [20] to identify documentation debt causes and
effects, and performed interviews with practitioners to recognize preventive and repay-
ment practices for documentation debt items. The authors reported 23 causes (deadline
was the most cited), 15 effects (low maintainability), and three solutions (for exam-
ple, keep the documentation updated) for documentation debt items. Barbosa et al. [8]
analyzed 78 answers from the InsighTD to investigate causes, effects, and practices to
prevent and repay requirements and documentation debt items. The authors found 55
causes (deadline was the most cited), 33 effects (delivery delay), and 18 solutions (code
refactoring).

Lastly, Bonfim and Benitti [9] interviewed 19 agile software practitioners on causes,
effects, and practices to minimize requirements debt. The authors identified eight causes
(e.g., failing to clarify the demand initially received from the customer), seven effects
(e.g., requirements inconsistency), and one solution (assessing the impact of technical
debt).

6 S. Freire et al.

We recognize that current related work provides valuable information about RE
issues. However, a careful analysis of grey literature on the topic is still missing. Grey
literature, such as those found in Q&A platforms, is a valuable source of information
and commonly provides complementing results compared to those found through other
sources of information like surveys, interviews, and literature reviews [19].

Our work investigates RE issues; however, we use a software engineering Q&A
forum as a proxy to understand the causes, effects, and solutions for these issues. It uses
quantitative and qualitative data analysis to reveal the perception of a broad and diverse
set of software development practitioners on the subject. It also analyzes how our results
complement the NaPiRe findings [2].

No related work has used a Q&A platform to investigate RE issues considering their
causes, effects, and possible solutions. Using this platform as a proxy can allow us to
learn from the experience of software practitioners when discussing daily issues.

3 Research Strategy

In this work, we investigate how software engineers experience RE issues. To this end,
we seek answers to the following research questions:

• RQ1: What are the main RE issues discussed by software engineers?
• RQ2: What are the causes that lead to RE issues?
• RQ3: What are the effects of RE Issues?
• RQ4: What solutions have been considered?

The following subsections present the data collection and analysis procedures.

3.1 Data Collection

We use the Stack Exchange data dump (version July 9th, 2022) in our analyses. From
this repository, we can access data from any Stack Exchange website, including their
posts (questions and answers), comments, and metadata.

In the Q&A structure provided on Stack Exchange, each discussion is composed of
the question around which the discussion is centered, the answers to the question, and
the comments on both questions and answers. A discussion can have a set of comments
presented below the post that goes beyond the discussion, clarifying and enriching the
content conveyed through questions and answers [21]. A tag is a keyword or label that
categorizes the question. The use of tags makes it easier for others to find and answer the
question. To create a new tag, a user needs at least 1500 reputation points in the forum,
which is earned by receiving positive feedback from others in questions, answers, and
comments.

In this study, we focus on the SWESE website. As SWESE users can refer to a
topic in different ways when asking a question or answering it [16], we decided to use
the tag ‘requirements’ to filter the discussions. Thus, we rely on the indication of the
author that the question is related to requirements. Although SWESE has some tags
related to RE (‘requirements’, ‘requirements-management’, ‘functional-requirements’,
and ‘minimal-requirements’), we choose ‘requirements’ as it is a generic tag allowing

Requirements Engineering Issues Experienced by Software Practitioners 7

us to map several issues related to requirements. This resulted in 374 discussions. As we
are interested in analyzing requirements-related discussions, we carried out a filtering
process, as depicted in Fig. 1.

In Step 1 - Eliminate incomplete discussions from the data set; we consider a
discussion complete when a question is followed by one or more answers, where there is
at least one answer whose author is different from the question’s author. After applying
this criterion, the initial 374 discussions remained. Concerning Step 2 - Eliminate
untrustworthy discussions, other studies have found that data from Q&A forums can
be affected by noise [22, 23], requiring mitigating this noise using different proxies. As
in Gomes et al. [16] and dos Santos et al. [17], we decided to use the discussion score as a
filtering proxy. A post score is a Stack Exchange popularity metric in which users, other
than the post author, can give an up-vote to the post if they find it useful or a down-vote if
they find it not useful. A discussion score is the difference between up-votes and down-
votes of all its posts. We decided to filter out discussions with scores lower than ten since
we wanted to consider the most relevant discussions according to the community. After
this filtering, 155 discussions remained out of the initial 374. These 155 discussions
are modified (i.e., received new answers) between 2011 and 2022. Finally, in Step 3 -
Qualitative data analysis, each of the 155 discussions went through the qualitative data
analysis process described in the next section.

Fig. 1. Data filtering process.

3.2 Data Analysis

The qualitative analysis was composed of three steps, shown in Fig. 2. In step 1, the
155 discussions were divided into three subsets (52, 52, and 51 discussions) between
three pairs of authors. For each discussion, individually, the researchers filled in the set
of questions presented in Fig. 2, reporting the problem (including causes and effects),
phase of the requirement process, and solutions reported. This information, when found,
was recorded according to the perception of each researcher without any previously
established codes. This bottom-up approach was considered most appropriate given the
lack of previous analysis of the discussions and the nature of the discussions themselves.
The exception to this procedure was the use of the codes for requirement phases, which
were based on the ISO 29148 standard [24].

While going through the information-gatheringquestions, the researchers also looked
for false positives, taking into consideration the following rules:

• Rule 1: Discussions that, in spite of having the tag ‘requirements’, did not discuss
issues related to requirements were marked as false positives.

8 S. Freire et al.

• Rule 2: This work intends to map real-world issues and doubts faced by practitioners
when dealing with requirements in actual software projects. Questions that did not
approach a specific issue were marked as false positives.

• Rule 3: We considered causes, effects, and solutions present in questions, answers,
and comments. When these points were brought by the question’s author, or they
were confirmed by the author, we marked them as ‘Confirmed by author.’ The ques-
tion’s author can confirm something by accepting an answer (only one answer can be
accepted in Stack Exchange) or by giving a corroborating comment to an answer or
comment. When there are not any indications of the author’s confirmation, we mark
it as ‘Not Confirmed by author.’

Fig. 2. Analysis procedure.

Thus, discussions that have the tag ‘requirements’ but were not about a real-world
RE issuewere considered false positives. For instance, in Fig. 3(a), a student is asking for
advice to improve her/his business skills, but the discussion is not related to a real-world
situation. On the other hand, the example presented in Fig. 3(b) is considered valid. From
the part “our organization”, we can see that the author is a practitioner and is reporting a
real-world issue. Taking into consideration the whole discussion illustrated in Fig. 3(b),
we answered the questions shown in Fig. 2 as follows:

• What are the issues? The customer is unable to describe system requirements.
• Does the issue occur in which phase(s) of a RE process? Stakeholder needs and
requirements definition process.

• What are the causes of the issue? The customer is unable to describe system
requirements.

• What are the effects of the issue? Requirements described by the customer are
incomplete or inappropriate.

In Fig. 4, we can see one of the answers related to the question presented in Fig. 3(b).
Based on the text, we identified two solutions: job shadowing or ethnography, and
prototyping. By the upvotes on the answer, we can also assume that these are well-
accepted approaches by the participants to solve the problem: 19 people considered the
answer relevant and helpful.

Requirements Engineering Issues Experienced by Software Practitioners 9

During the analysis, the researchers also considered the links posted to other web
pages, such as articles and tutorials. For instance: “User stories are requirements.
There are a set of characteristics of a good requirement that tend to be well accept-
ed”. There was also the need to understand the jargon used by practitioners, such as
cone of uncertainty, five-whys, and others, that required reading from other sources.

Fig. 3. Example of a (a) false positive and a (b) valid discussion.

Fig. 4. One of the answers to the question shown in Fig. 3(b).

It is also worth mentioning that during step 1, the researchers were encouraged
to record the information regarding RE issues freely, without any coding, and to put
most data they think are necessary to answer the questions in Fig. 2. We decided to
follow this approach because the analysis requires understanding and interpretation by
the researchers.

10 S. Freire et al.

In step 2, each pair of researchers performed the coding and then the consensus of
their answers. For each discussion, we created terms to represent and group the issues,
causes, effects, and solutions. For example, validating requirements with the customer
was used to code solutions such as: asking for client feedback and performing UAT (User
Acceptance Testing) with the client. In case of agreement of the analysis and coding, the
data was added to the results. The divergences went to step 3.

In step 3, jointly, the two authors from the previous step, plus a third author, ana-
lyzed the divergences to ensure general agreement of the data set. Our final sample was
composed of 61 out of 155 analyzed discussions. There were 94 discussions considered
false positives. The final data set is composed of 414 posts and 770 comments.

4 Results

This section presents the results obtained from the analyses. These results are used to
answer the proposed research questions.

4.1 RQ1: What are the Main RE Issues Discussed by Software Engineers?

We identified 50 RE issues. Table 1 presents the five most cited, along with the number
of mentions of each issue (#RI) and the percentage of the total of mentions (%RI). The
complete list of issues is available in [25]. The need for detailed specifications was the
most mentioned issue, followed by customers’ unable to describe system requirements,
lack of a well-defined process for gathering and verifying requirements, request for
change of requirements, and trace and map requirements.

The issue the need for detailed specifications is associated with incomplete or lack of
requirements specifications, for example, “the business part of the specs is either incom-
plete or unaware of what can and can’t be done.” Customers’ unable to describe system
requirements is related to the customer’s difficulty in describing the system purpose
and functionalities, as reported in “I receive many weird, invalid or incomplete requests
from the actual or potential customers.” Lack of a well-defined process for gathering and
verifying requirements refers to inefficient processes used for requirements activities;
for instance, “I am able to see the lack of a systematic approach, but don’t know how to
proceed!” Request for change of requirements means that requirements change over the
course of the project, such as “the manager and at times other “senior” keep changing
the requirement specification.” Lastly, trace and map requirements mean that software
teams cannot relate requirements to part of the system; for example, “… There are so
many stories, it’s not immediately clear, for any part of the system which stories relate
to it.”

Requirements Engineering Issues Experienced by Software Practitioners 11

Table 1. Five most commonly mentioned RE issues.

Requirement Issue #RI %RI

The need for detailed specifications 6 9%

Customers’ unable to describe system requirements 5 8%

Lack of a well-defined process for gathering and verifying requirements 3 5%

Request for change of requirements 2 3%

Trace and map requirements 2 3%

Caption:
#RI: Number of mentions of a requirement issue
%RI: Percentage of #RI in relation to the total all mentioned requirements issues (66)

The other best-positioned RE issues are user stories level of detail, indication of
hardware requirements, requirements gathering done by non-technical people, mapping
concrete implementation to vague business requirements, and user requirements veri-
fication. The issue user stories level of detail refers to the level of detail that a user
story needs to have to guide the software development, as we can see in “how much
detail about a user story can a developer expect?” Indication of hardware requirements
means the specification of hardware requirements to provide the software deployment,
for example, “…they have their own internal IT team, they have asked me on what will
be the hardware requirements for the live servers.”Requirements gathering done by non-
technical people is about having a non-technical person collect the system requirements,
as reported in “…it is often the case that the members of the development team are not
able to get direct access to the client to gather requirements. Is it possible/advisable to
give a list of questions to an account manager so that they can gather requirements on
your behalf?” Mapping concrete implementation to vague business requirements refers
to vague business requirements that make it difficult to implement, for example, “How
can you link concrete implementation of features to vague business requirements and
ensure that the business will be happy with the results, given a lack of technical exper-
tise and buy in from a business?” Lastly, user requirements verification is associated
with the lack of details provided by the user about their system’s needs, for example,
“I show the user specifications, prototypes, demos… but still users forget to share some
‘insignificant details’ about the process or business rules and data.”

We also investigated the RE phases affected by the identified issues, as shown in
Fig. 5. The phases stakeholder needs and requirements definition process, requirements
management, and system [system/software] requirements definition process are the most
commonly impacted. Results also reveal that practitioners havemainly mentioned issues
from the requirements conception to their specification.

4.2 RQ2: What are the Causes that Lead to RE Issues?

We found 20 causes that lead to RE issues. Table 2 presents the five most cited causes,
along with the number of mentions of each cause (#C) and the percentage of the total

12 S. Freire et al.

Fig. 5. Relationship between RE issues and RE phases.

of mentions (%C). The complete list of causes is available in [25]. Lack of technical
knowledge was the most cited cause, followed by communication issues, requirements
from various sources, undefined requirements, and difficulty in specifying non-functional
requirements.

Lack of technical knowledge indicates that a software team or managers do not have
technical background, such as, “my manager has no background or understanding of
computers or software whatsoever.” Communication issues refer to the lack of access
to the customer or users, for example, “…it is often the case that members of the devel-
opment team are not able to get direct access to the client to gather requirements.”
Requirements from various sources means that users use different ways, such as emails
and documents, to send requirements to software teams, as illustrated in “I receive soft-
ware system’s requirements from our potential customers in a very unstructured format
from several sources [email, word documents, excel].”Undefined requirements are asso-
ciated with ambiguous, unclear and conflicting requirements, as described in, “I am an
inexperienced developer and face the following problem… I am assigned tasks with
not clear and conflicting requirements.” Lastly, difficulty in specifying non-functional
requirements is related to doubts about how or where to describe non-functional require-
ments, for example, “should system configuration settings have a specification assigned
to them? On what document?”.

Table 2. Five most commonly mentioned causes for RE issues.

Cause #C %C

Lack of technical knowledge 26 33%

Communication issues 7 9%

Requirements from various sources 6 8%

Undefined requirements 6 8%

Difficulty in specifying non-functional requirements 4 5%

Caption:
#C: Number of mentions of a cause
%C: Percentage of #C in relation to the total all mentioned causes (79)

Requirements Engineering Issues Experienced by Software Practitioners 13

The other best-positioned causes are difficulty in specifying non-functional require-
ments, incomplete requirements gathering, lack of requirements verification, lack of
requirements specification documentation, and lack of proper requirements manage-
ment. The cause difficulty in specifying non-functional requirements is associated with
the difficulty of the RE team in specifying non-functional requirements, for example,
“Should system configuration settings have a specification assigned to them? On what
document? Should this be part of the SRS with the rest of the application’s software
specifications or should this be recorded as specifications in another domain?” Incom-
plete requirements gathering means that not all information about the requirement has
been collected, such as “if you push the current state to production, the app will appear
unusable since it is missing a key functionality (that the customer didn’t included in
the requirements earlier).” Lack of requirements verification is related to the lack of
officially verify the requirements, as we can see in “I don’t have to follow any designs
or verify requirements officially.” Lack of requirements specification documentation is
associated with the lack of documentation that has the requirements specification, such
as “The previous implementation was done (badly) by a senior developer that left the
company and did so without leaving a trace of documentation.” Lastly, lack of proper
requirements management refers to the lack of a proper management of requirements
(tracking, specifications etc.), as we can notice in “What is a sane software solution for
requirements/software specs?”.

4.3 RQ3: What are the Effects of RE Issues?

We found 23 effects of the presence of RE issues. Table 3 presents the five most cited
effects, along with the number of mentions of each effect (#E) and the percentage of the
total of mentions (%E). The complete list of effects is available in [25].

Rework, unstable requirements, requirements specification inefficiency, development
activity inefficiency, and requirements management inefficiency are the most commonly
mentioned. Rework refers to the need of modifying the source code or requirement
specification due to requirements changes, as illustrated in “I code all day and finally get
stuck where requirement conflicts and I have to start over again.” Unstable requirements
mean that requirements change out of the software team control; for instance, “I have
been through telling the customer what he wants, only to find the requirements change at
a later date.” Requirements specification inefficiency is related to complex or incomplete
specifications, as reported in “more often than not, the business part of the specs is either
incomplete or unaware of what can and can’t be done.”Development activity inefficiency
refers to how lack of complete requirements affects development activities, as described
in “most of the times… it’s usually only when we start designing and developing that we
end up in trouble, as a lot of the spec seems to have holes.” Lastly, requirements gathering
inefficiency indicates that important requirement was not captured during requirements
elicitation “…the user realizes a major missing functionality that should be included in
the system.”

The other best-positioned effects are requirements gathering inefficiency, project
stopped due to lack of requirements, dissatisfaction, inaccuracy in non-functional
requirements, and difficulty with system evolution/maintenance. The effect requirements
gathering inefficiency refers to lack of information about the system requirements, as

14 S. Freire et al.

Table 3. Five most commonly mentioned effects of RE issues.

Effect #E %E

Rework 6 10%

Unstable requirements 5 9%

Requirements specification inefficiency 5 9%

Development activity inefficiency 5 9%

Requirements gathering inefficiency 4 7%

Caption:
#E: Number of mentions of an effect
%E: Percentage of #E in relation to the total all mentioned effects (58)

described in “the user realizes amajormissing functionality that should be included in the
system…” Project stopped due to lack of requirements is associated with users who did
not know what functionalities the system may have, delaying its development. Dissatis-
faction is related to the dissatisfaction of the software team with RE activities, as we can
see in “Everything is rosy but the job.” Inaccuracy in non-functional requirements refers
to questions about where to describe non-functional requirements, for example, “In my
current role, the team is using Agile Scrum and JIRA to write the user stories to capture
the functional requirements etc.” Lastly, difficulty with system evolution/maintenance is
related to the difficulty of software team in maintaining the system due to the lack of
system requirements specifications, such as “I don’t want to compromise with quality
but don’t want to re-write everything on some change that I didn’t expected.”

4.4 RQ4: What Solutions Have Been Considered?

We found 59 possible solutions for RE issues. Table 4 presents the five most cited ones,
along with the number of mentions of each solution (#S) and the percentage of the total
of mentions (%S). The complete list of solutions is available in [25].

Clearly defining requirements solution was the most mentioned, followed by use
agile methodology, presenting solutions to the customer, using prototypes, and using
techniques for requirements estimation. In the context of this work, clearly defining
requirements indicates that software teams need to spend time clarifying the require-
ments, as illustrated in “don’t rush into coding the solution. Before typing down a single
LOC, spend some time on clarifying the requirements…”. Use agile methodology refers
to following an agilemethodology to support the RE process, for example, “what I would
suggest in your case is a sort of agile approach.” Presenting solutions to the customer
refers to requesting feedback from the customer for a proposed solution, as described in
“write a document proposing 2 or 3 solutions… get the customer to sign off on the ones
they want and implement.” Using prototypes is related to develop incomplete versions
of the software to demonstrate its use and support requirements process activities, for
example, “build prototypes. Just start drawing screens that don’t do anything at first”.
Lastly, using techniques for requirements estimation refers to the use of techniques to

Requirements Engineering Issues Experienced by Software Practitioners 15

estimate the requirement complexity, such as “try to do some collective estimation using
planning poker.”

Table 4. Five most commonly mentioned solutions for RE issues.

Solution #S %S

Clearly defining requirements 18 10%

Use agile methodology 12 6%

Presenting solutions to the customer 12 6%

Using prototypes 10 5%

Using techniques for requirements estimation 7 4%

Caption:
#S: Number of mentions of a solution
%S: Percentage of #S in relation to the total of all mentioned solutions (189)

The other best-positioned solutions are prioritizing requirements, defining non-
functional requirements together with the customer, using requirements management
tools, holding meetings with customers, and defining done definition. The solution prior-
itizing requirements refers to use a criterion to prioritize the software requirements, for
example, “Give priority to the most required parts of the system and ask you to do the top
ones in the given time.”Defining non-functional requirements together with the customer
is related to define the system’s restrictions with the customer, as we can see in “you
can simply create a user story in JIRA to document a nonfunctional requirement.” Using
requirements management tools is associated with the use of tools to support different
RE activities, such as “use of a wiki for tracking requirements.” Holding meetings with
customers indicates that requirements analysts may have meetings with the customer
to define the scope, collect the requirements, and have details about them, for example,
“Suggest that you meet up and spend around an hour going through the details.” Lastly,
defining done definition refers to ensure that the job is fully completed, such as “You
should have a definition of done.”

5 Discussion

This section presents the relationship between requirements phases, issues, and solutions.
It also compares our findings with those reported in related work.

5.1 Relationship Between Requirements Phases, Issues, and Solutions

From answering RQ1 and RQ4, we identify the main RE issues, RE phases affected
by them, and their possible solutions. The data allowed us to go further and identify
relationships between them when they are present in the same discussion. For exam-
ple, we detected that the issue of access to requirements is related to the requirements

16 S. Freire et al.

management phase in a discussion, and one of the reported solutions was to use agile
methodology. We recorded the triples formed by RE phase - RE issues - RE solutions as
relationships and then grouped and counted all of them.

We organized the identified relationships using a Sankey diagram [26]. This diagram
is composed of bars, representing the sources and destination of information, and links,
showing themagnitude of the flow between those bars. Figure 6 shows a Sankey diagram
considering the most common relationships we found on SWESE (the complete version
is available in [25]). The flow starts with RE phases (left side) which are related to RE
issues (middle), which are associated with possible solutions (right side). The numeric
values next to each element (phase, issue, and solution) show the total number of times
that a relationship occurs. The thickness of each link varies according to the value of the
relationship.

Fig. 6. Sankey diagram for the most affected RE phases and their most mentioned issues and
solutions.

By analyzing the diagram, we can see, for instance, that the requirements manage-
ment phase was affected by the following issues: access to requirements and request for
change of requirements. The last issue has the following possible solutions: support the
manager and define the effort and impact of requirements change’.

5.2 Comparison to Related Work

We compared our findings to the ones reported by the NaPiRE project [2]. This com-
parison was performed by one researcher and reviewed by three others. We realized that
some issues, causes, or effects fromNaPiREmatchedwithmore than one from our study.
For example, the issue of weak knowledge of customer’s application domain (NaPiRE)
corresponds to requirements team is unaware of business rules and absence of business
requirements (our work).

Requirements Engineering Issues Experienced by Software Practitioners 17

Figure 7 shows the Venn diagrams with comparison results from issues, causes, and
effects. We found 30 new issues, such as requirements gathering done by non-technical
people, mapping concrete implementation to vague business requirements, and user
requirements verification. Also, we recognized five new causes (lack of requirements
verification, poorly implemented requirement, change of development methodology, lack
of code review, and lack of requirements specification documentation) and eight new
effects (requirements management inefficiency, project stopped due to lack of require-
ments, inefficiency in specifying code quality requirements, failed project, need to use a
support tool, inefficiency in the agile process, inefficiency in the requirements process,
and management wants to start development even without defining requirements).

Fig. 7. Venn diagram with a comparison between issues, causes, and effects from our study and
the NaPiRe project [2].

The complete comparison between the twoworks is available in [25], but in summary,
our results not only confirm but also extend the set of information already reported in
the technical literature.

6 Threats to Validity

This section discusses the threats to validity present in our study and actions taken to
mitigate them. The threats follow the classification defined in [27].

Construct: This threat arises from a poor definition of the theoretical basis or the
definition of the empirical process. In our case, the questions in Table 1 might not
have been enough to gather all the necessary information from the discussions. We
mitigated this threat using the NaPiRE protocol [2] to define those questions. Another
threat is the process of choosing the discussions about RE issues. We mitigate this threat
by performing tests with several terms related to RE, based on [24], before deciding
which terms would be used. In addition, we applied both quantitative and qualitative
filters to minimize the noise in our analysis. Lastly, a threat emerges from the fact that
we only chose one Stack Exchange site (SWESE) and one tag (‘requirements’). Stack
Exchange has several websites focusing on different aspects of software development
process, such as Software Quality Assurance & Testing and Stack Overflow, which can
provide different perspectives on software requirements. However, we were interested
in investigating issues in software requirements in general, leading us to choose SWESE
as proxy and its ‘requirements’ tag. Even so, we recognize that using only one forum
and one tag is a limitation of our work.

18 S. Freire et al.

Internal:Theprocess used for analyzing and coding the causes, effects, and solutions
for RE issues can represent a threat in our study. To avoid this threat, the aforementioned
procedures were performed by three pairs of researchers separately. Meetings were held
at the beginning of the activities to align the activities among all the researchers. After the
analysis, disagreements were resolved in consensusmeetings between those researchers.
Lastly, the results were reviewed by an experienced researcher.

External: This threat relates to the reasonableness of generalizing our conclusions.
We considered a sample from SWESE, a popular Q&A platform where practitioners
discuss day-to-day issues. We cannot guarantee that all SWESE participants are knowl-
edgeable software engineers. However, the study only considers real-world practices,
and the discussions in the forum are contextualized in the software development area.
Thus, the results provide a valid perspective for analyzing RE issues in the context of
software development. Even so, we suggest caution when generalizing the results.

Conclusion: The subjectivity of the analysis and interpretation of the discussions
and coding process might lead to different results, even if the samemethodology is used.
This threat was minimized through the analysis process presented in Sect. 3.

7 Concluding Remarks

This work investigates RE issues discussed by software practitioners in the SWESE
Q&A forum. Software practitioners can use our results to identify possible solutions
for RE issues. For example, if a team is experiencing the issue the need for detailed
specifications, the team can apply the solution clearly define the requirements as sug-
gested in the Sankey diagram. Also, a software team can define strategies to deal with RE
issues by consulting the list of causes and effects. By analyzing the causes, practitioners
can define preventive practices to curb the presence of RE issues. Having information
on effects can drive practitioners to identify the issues present in their projects. Lastly,
researchers can use our findings to develop tools, strategies, and methodologies closer
to practitioners’ needs.

In future work, we intend to: (1) analyze the complete discussion population of
SWESE and other Stack Exchange websites, broadening the findings and proving visu-
alizations between issues and their elements (causes, effects, and solutions); (2) conduct
interviews with software requirements analysts to assess the findings reported in this
work in terms of their level of importance for RE management; and (3) update the pro-
posed diagram considering the results obtained in (2) and empirically assess it with
respect to its effectiveness to support the management of RE issues.

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Conference on the
Future of Software Engineering, pp. 35–46, ACM, New York, USA (2000)

2. Fernández, D.M., et al.: Naming the pain in requirements engineering. Empir. Softw. Eng.
22(5), 2298–2338 (2016). https://doi.org/10.1007/s10664-016-9451-7

3. Nikula, U., Sajaniemi, J., Kälviäinen, H.: A state-of-the-practice survey on requirements engi-
neering in small-and medium-sized enterprises. Research Report 951-764-431-0, Telecom
Business Research Center Lappeenranta (2000)

https://doi.org/10.1007/s10664-016-9451-7

Requirements Engineering Issues Experienced by Software Practitioners 19

4. Solemon, B., Sahibuddin, S., Ghani, A.A.A.: Requirements engineering problems and prac-
tices in software companies: an industrial survey. In: Ślęzak, D., Kim, T.-H., Kiumi, A., Jiang,
T., Verner, J., Abrahão, S. (eds.) ASEA 2009. CCIS, vol. 59, pp. 70–77. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10619-4_9

5. Liu, L., Li, T., Peng, F.: Why requirements engineering fails: a survey report from China. In:
18th IEEE International Requirements Engineering Conference, pp. 317–322 (2010)

6. Pekar, V., Felderer, M., Breu, R.: Improvement methods for software requirement specifica-
tions: a mapping study. In: 9th International Conference on the Quality of Information and
Communications Technology, pp. 242–245 (2014)

7. Rios, N., et al.: Hearing the voice of software practitioners on causes, effects, and practices
to deal with documentation debt. In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi, S. (eds.)
REFSQ 2020. LNCS, vol. 12045, pp. 55–70. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-44429-7_4

8. Barbosa, L., et al.: Organizing the TD management landscape for requirements and
requirements documentation debt. In: Workshop on Requirements Engineering (2022)

9. Bonfim, V.D., Benitti, F.B.V.: Requirements debt: causes, consequences, and mitigating prac-
tices. In: International Conference on Software Engineering & Knowledge Engineering,
pp. 13–18, Pittsburgh (2022)

10. Rios, N., Mendonça, M., Spínola, R.: A tertiary study on technical debt: types, management
strategies, research trends, and base information for practitioners. Inf. Softw. Technol. 102,
117–145 (2018)

11. Kamei, F., et al.: Grey literature in software engineering: a critical review. Inf. Softw. Technol.
138, 106609 (2021)

12. Barua, A., Thomas, S.W., Hassan, A.E.: What are developers talking about? An analysis of
topics and trends in stack overflow. Empir. Softw. Eng. 19, 619–654 (2014)

13. Tahir, A., Dietrich, J., Counsell, S., Licorish, S., Yamashita, A.: A large scale study on how
developers discuss code smells and anti-pattern in stack exchange sites. Inf. Softw. Technol.
125, 106333 (2020)

14. Montandon, J.E., Politowski, C., Silva, L.L., Valente, M.T., Petrillo, F., Guéhéneuc, Y.: What
skills do IT companies look for in new developers? A study with stack overflow jobs. Inf.
Softw. Technol. 129, 106429 (2021)

15. Gama, E., Freire, S., Mendonça, M., Spínola, R., Paixao, M., Cortés, M.I.: Using stack
overflow to assess technical debt identification on software projects. In: Brazilian Symposium
on Software Engineering, pp. 730–739 (2020)

16. Gomes, F., dos Santos, E.P., Freire, S.,Mendonça,M.,Mendes, T.S., Spínola, R.: Investigating
the point of view of project management practitioners on technical debt. In: IEEE/ACM
International Conference on Technical Debt, pp. 31–40 (2022)

17. dos Santos, E.P., Gomes, F., Freire, S., Mendonça, M., Mendes, T.S., Spínola, R.: Technical
debt on agile projects: managers’ point of view at Stack Exchange. In: Brazilian Symposium
on Software Quality. ACM, New York (2022)

18. Vasilescu, B., Serebrenik, A., Devanbu, P., Filkov, V.: How social Q&A sites are chang-
ing knowledge sharing in open source software communities. In: 17th Computer Supported
Cooperative Work and Social Computing, pp. 342–354 (2014)

19. Ahmad, A., Feng, C., Ge, S., Yousif, A.: A survey on mining stack overflow: question and
answering (Q&A) community. Data Technol. Appl. 52, 190–247 (2018)

20. Rios, N., Spínola, R.O., Mendonça, M., Seaman, C.: The practitioners’ point of view on
the concept of technical debt and its causes and consequences: a design for a global family
of industrial surveys and its first results from Brazil. Empir. Softw. Eng. 25(5), 3216–3287
(2020). https://doi.org/10.1007/s10664-020-09832-9

https://doi.org/10.1007/978-3-642-10619-4_9
https://doi.org/10.1007/978-3-030-44429-7_4
https://doi.org/10.1007/s10664-020-09832-9

20 S. Freire et al.

21. Sengupta, S., Haythornthwaite, C.: Learning with comments: an analysis of comments and
community on Stack Overflow. In: Hawaii International Conference on System Sciences,
pp. 2898–2907 (2020)

22. Ahasanuzzaman, M., Asaduzzaman, M., Roy, C.K., Schneider, K.A.: Mining duplicate ques-
tions of stackoverflow. In: IEEE/ACMWorkingConference onMiningSoftwareRepositories,
pp. 402–412. IEEE (2016)

23. Kavaler, D., Posnett, D., Gibler, C., Chen, H., Devanbu, P., Filkov, V.: Using and asking:
APIs used in the android market and asked about in Stack Overflow. In: Jatowt, A., et al.
(eds.) SocInfo 2013. LNCS, vol. 8238, pp. 405–418. Springer, Cham (2013). https://doi.org/
10.1007/978-3-319-03260-3_35

24. ISO/IEC/IEEE International Standard: Systems and software engineering–life cycle pro-
cesses–requirements engineering. In: ISO/IEC/IEEE 29148:2018(E), pp. 1–104 (2018)

25. Freire, S., et al.: Requirements engineering issues experienced by software practitioners: a
study on stack exchange-complementary material. Zenodo (2023). https://doi.org/10.5281/
zenodo.7647916

26. Lupton, R.C., Allwood, J.M.: Hybrid Sankey diagrams: visual analysis of multidimensional
data for understanding resource use. Resour. Conserv. Recycl. 124, 141–151 (2017)

27. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-319-03260-3_35
https://doi.org/10.5281/zenodo.7647916
https://doi.org/10.1007/978-3-642-29044-2

An Empirical Study of the Intuitive
Understanding of a Formal Pattern

Language

Elisabeth Henkel(B) , Nico Hauff , Lukas Eber, Vincent Langenfeld ,
and Andreas Podelski

Department of Computer Science, University of Freiburg,
Freiburg im Breisgau, Germany

{henkele,hauffn,langenfv,podelski}@informatik.uni-freiburg.de

Abstract. [Context and motivation] Formal pattern languages with
a restricted English grammar, such as the pattern language of Konrad
and Cheng, give us the possibility to combine human intuition and the
rigour of a machine. [Question/problem] The question arises to what
extent the intuitive understanding of such a pattern language is in agree-
ment with its formal semantics. [Principal ideas/results] We present
an empirical study to address this question. The existence of a formal
semantics allows us to use the machine as an objective judge to decide
if the intuitive understanding is correct. The study confirms empirically
the practical usefulness of HanforPL in that the intuitive understand-
ing matches the formal semantics in most practically relevant cases. The
study reveals that a number of phrases of interest represent critical edge
cases where even a prior exposure to formal logic is not a guarantee for
the correct intuitive understanding. [Contribution] We show how the
alignment of formal and intuitive semantics can be investigated, and that
this alignment can not simply be assumed. Nonetheless, results regard-
ing the understandability of HanforPL are favourable with high under-
standability in commonly used patterns. The results of the study will be
the basis of improvements in HanforPL.

Keywords: Pattern Languages · Formal Requirements · Intuitive
Understanding · Empirical Study

1 Introduction

The formal representation of requirements is supposed to overcome some of the
deficiencies of natural language requirements, especially lack of precision and non-
machine readability [2,5,15,16]. However, if requirements are formulated in a for-
mal logic such as temporal logic, they are accessible to only a restricted group of
requirement engineers. To overcome the lack of general accessibility, Konrad and
Cheng introduced a pattern language to formulate formal requirements as sen-
tences in a restricted English grammar [8]. The intuitive understanding of these
sentences is based on the intuitive understanding of natural language, while the
formal semantics is derived through corresponding temporal logic formulas.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 21–38, 2023.
https://doi.org/10.1007/978-3-031-29786-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_2&domain=pdf
http://orcid.org/0000-0003-3844-8292
http://orcid.org/0000-0002-8972-2776
http://orcid.org/0000-0001-9835-6790
http://orcid.org/0000-0003-2540-9489
https://doi.org/10.1007/978-3-031-29786-1_2

22 E. Henkel et al.

Fig. 1. Example behaviour over the observ-
ables R and S .

For example, we can use its formal
semantics to uniquely determine that
the requirement below is satisfied by
the behaviour depicted in Fig. 1:

Globally, it is always the case
that if R holds, then S holds
after 1 time unit.

It would thus seem that with pat-
tern languages, we are in the ideal sit-
uation where we can have both, the precision of formal requirements and the
accessibility of natural language. However, while the interface to the computer
is fixed by the formal semantics, the interface to the human still relies on the
intuitive interpretation of natural language. The question is to what extent we
still have the issues of natural language requirements if restricted to the sub-
set of sentences defined in a pattern language. In particular, the question arises
to what extent the intuitive understanding of each requirement in the pattern
language will be correct.

The existence of a formal semantics for the requirements gives us the unique
opportunity to phrase the above question in a mathematically precise sense.
We can give a mathematically precise definition of what is the correct intuitive
understanding of a requirement in the pattern language, namely, through its for-
mal meaning. In contrast, for an informal requirement, it would seem impossible
to distinguish one possible intuitive understanding over another one.

For a requirement in the pattern language, the formal meaning is defined
as the set of system behaviours that satisfy the corresponding temporal logic
formula. Thus, we can base the test of the intuitive understanding of a require-
ment on a set of example behaviours, some of which satisfy the requirement
and some of which do not. The existence of a formal semantics allows us to
define an objective judge who decides whether the intuitive understanding is
correct: the machine. Both, the requirement and the behaviour have a machine
representation, and an algorithm exists to decide whether the behaviour satis-
fies the requirement. Thus, we only compare the intuitive understanding to the
algorithmic decision.

In this paper, we report on an empirical study to investigate the difference
between the formal semantics and the intuitive understanding of requirements in
a particular example of a pattern language called HanforPL. The pattern lan-
guage comes with a framework to specify requirements and behaviours, and to
check whether a behaviour satisfies a requirement [1,5]. The study confirms empir-
ically the practical usefulness of HanforPL in that the intuitive understanding
matches the formal semantics in many cases. The study reveals that a number of
phrases of interest represent critical edge cases where even a prior exposure to for-
mal logic is not a guarantee for the correct intuitive understanding.

Understanding of a Formal Pattern Language 23

Table 1. The table shows all patterns of HanforPL, with their membership to a
group describing overall behaviour (the Order, the Occurrence, or the Real-Time), the
names of each pattern, and the pattern text. Due to the available space, we use “...” to
omit the shared phrase it is always the case that. Names of patterns not already part
of the SPS [13] are shown in blue colour.

2 Hanfor Pattern Language

The Hanfor pattern language (HanforPL) is based on the patterns of Konrad
and Cheng [8] and uses the Duration Calculus semantics of Post [13]. In fact,
HanforPL shares a large portion of patterns with the Specification Pattern
System (SPS) from [13].

Each instantiation of a requirement in HanforPL is a combination of a
scope defining the general applicability of a pattern, followed by the pattern
itself. The scopes can be chosen from the following options Globally, After P ,
After P until Q , Before P , and Between P and Q . The resulting patterns are
listed in Table 1. During instantiation placeholders (usually P, Q, R, S, T) have
to be replaced by Boolean expressions over observables (using ¬,∧ for Boolean
and <,= for numeric observables).

24 E. Henkel et al.

The semantics of each scope and pattern combination is defined by a logical
formula containing the same placeholders. For a more depth introduction to the
formal foundations and the pattern semantics in detail, we kindly refer the reader
to the cited work.

3 Empirical Study

In this section, we describe the overall goal of our empirical study, our research
questions, and the study design.

3.1 Goal and Research Questions

As requirements pattern are used to communicate expected system behaviour,
e.g., between customers or different departments, it is necessary that require-
ments are as understandable as possible to as many stakeholders as possible.
That is, the semantics of the pattern defined by formal logics should align with
the intuitive understanding of usual stakeholders.

The goal of this study is thus to investigate to what extent the intuitive
understanding of formal requirements in HanforPL is correct in the sense that
it matches the formal semantics. This is closely related to the question of the
practical usefulness of HanforPL.

Further, we aim to identify possible reasons for misinterpretation in order to
improve HanforPL in the long term.

Based on previous experience (e.g. [9,11]), we are confident that formally
trained people with some training in HanforPL perform well using the pat-
tern language. With Research Question R1, we want to investigate how well
participants without any training in HanforPL understand the patterns.

However, a basic understanding of formal logics and/or requirements engi-
neering in general may serve as a predictor for the performance dealing with
edge cases and uncommon concepts (Research Question R2).

As the requirements pattern are based on natural language sentences, there
may be phrases that allow for several sensible interpretations for complex con-
cepts, e.g., formulations referring to timing constraints and quantification. These
phrases of interest are investigated in detail in Research Question R3.

R1 How understandable is HanforPL without former training in the pattern
language itself?

R2 Does training in the fields of requirements engineering or formal logics have
a positive effect on the understanding of HanforPL patterns?
a) Requirements engineering
b) Formal logics

R3 How is the understanding of HanforPL impacted by complex concepts,
i.e., formulations referring to timing constraints and quantification?

Understanding of a Formal Pattern Language 25

With regard to the last Research Question (R3), we identified several phrases
used within HanforPL to describe concepts like timing constraints and quantifi-
cation. In the following, we present a list of these phrases of interest (highlighted
within the according pattern) together with a description of possible interpreta-
tions. Additionally, we state which of the possible interpretations matches the
intended meaning, i.e., the semantic fixed by the corresponding Duration Calcu-
lus formula.

(prev) [...] if R holds, then S previously held : For this phrasing, we see
two possible points for ambiguity. First, the phrase does not specify whether
S has to hold persistently or only for a non-zero time interval before any
occurrence of R. And second, it is not specified whether S has to hold at an
arbitrary point in time before the occurrence of R or directly before R holds.
The intended meaning is the following: Every occurrence of R must at some
point be preceded by a non-zero time interval in which S held.

(afterw)/(afterw*) [...] if [...], then S holds afterwards : Analogous to
(prev), we identified two possible ambiguities. The phrase does not spec-
ify, whether S has to hold persistently or only for a non-zero time interval
(afterw). Additionally, it is not specified, whether S has to hold directly after
the trigger event (the [...]-part) or only at an arbitrary point in time after
the triggered event (afterw*). The intended meaning is the following: S must
hold directly after the trigger event for some non-zero time interval.

(aam) [...] R holds after at most d seconds : The phrase does not specify
whether R has to hold persistently after the d seconds have passed (which is
the intended meaning), or only has to hold for a non-zero time interval.

(aam-cond) [...] if [...], then S holds after at most d seconds : This wording
is the conditioned version of (aam), i.e., it is dependent on the context of
a preceding trigger. Analogous, it is not specified whether S has to hold
persistently or only for a non-zero time interval after d seconds have passed.
The intended meaning is the following: S has to hold for a non-zero time
interval. However, due to an oversight while extending the pattern language,
this interpretation is clearly inconsistent with the intended meaning provided
in (aam).

(obs)/(obs+) [...] once R becomes satisfied [...]: We identified two pos-
sible ambiguities in this pattern. The first is regarding the meaning of the
phrase becomes satisfied. It might be unclear, whether a rising edge of R
is strictly required in all cases, or whether this phrase also includes system
behaviour where R initially holds (obs). The second ambiguity concerns the
keyword once. It might be unclear, whether this means that every occurrence
of R becoming satisfied should be considered or only the first occurrence
(obs+). The intended meaning is the following: all occurrences of rising edges
of R should be considered.

(rec) [...] R holds at least every 2 s : The intended meaning of this phrase is
that the length of intervals in which R does not hold is at most 2 s. However,

26 E. Henkel et al.

this wording might be misinterpreted so to mean, that R holds at fixed points
in time t0 = 0, t1 = 2, t2 = 4, . . . , tn = 2n.

Remark. Even though some inconsistencies, e.g., the intended meaning of holds
in (aam) and (aam-cond), were identified while preparing the study, we decided
to make no premature changes for two reasons: First, we are interested to know
whether such an inconsistency is noticeable in the results. Second, if it is notice-
able, which of the different interpretations is the one that most participants
agree with.

3.2 Subject Selection

Participants for the empirical study were selected via convenience sampling of con-
tacts of the authors and second-degree contacts in an original equipment manufac-
turer (OEM) in the automotive field. Subjects are mostly computer scientists and
requirements engineers from the field of software engineering, automotive engi-
neering and formal methods. The empirical study was conducted in the form of
an online survey with anonymous participants out of the described group. Partic-
ipants were asked to complete the survey without any help, but there is no control
mechanism against actual cheating. At the beginning of the survey, we asked the
participants for demographic information including their age group, their experi-
ence in requirements engineering, HanforPL, and formal logics.

3.3 Object Selection

This first step into the investigation of the understanding of a pattern language
is focused on pattern understanding from reading, as it is the basis for further
inquiries, e.g., into the generative task of pattern instantiation for formalisation.
Therefore, the study (apart from demographic questions) consists of a single
repeated task: to decide if pattern instantiations are fulfilled by timing diagrams
of system behaviour. Simply checking phrases in isolation (e.g., What is your
understanding of the phrase “holds after at most 2 s”?) was no option, as their
interpretation may differ when embedded into the context of a pattern. This can,
for example, be seen when comparing the intended meaning of the two phrases
of interest (aam) and (aam-cond) within the patterns R holds after at most T
seconds and If R holds, then S holds after at most T seconds.

Within the survey, we test the participants’ understanding of patterns from
the HanforPL. To select a suitable set of patterns, the following criteria are
considered: 1) The survey should focus on patterns that are relevant in industrial
practice, 2) the survey should include the patterns using phrases of interest, and
3) the survey should be short enough to be filled in without too much interruption
to a work day of participants in the industry, i.e., the survey should be completed
in about 30 to 40 min.

We considered patterns that were shown to be used frequently for the formal-
isation of requirements in the automotive context (criterion 1). We then added
patterns containing phrases of interest (criterion 2) if not yet included by the

Understanding of a Formal Pattern Language 27

Question 11-A: Is the requirement It is always the case that ifR holds, thenS
holds after at most 1 second. fulfilled in the following example?

Fig. 2. The first of the four questions to investigate the understanding of the
ResponseDelay pattern; correct answer: yes.

first selection criterion. For patterns whose meaning is inverse to an already
added pattern (e. g. it is always the case that R holds and it is never the case
that R holds), we only included the positive formulated pattern in the survey.
We do not assume that negative and positive formulations do behave similar,
but that using the usually less legible negative formulation is not adding any
new insights. Three patterns adding no unique phrases were dropped due to
the timing constraint (criterion 3). The selection process resulted in a list of 17
patterns from the HanforPL (see Table 2).

3.4 Survey Design

The questions should be formulated in a style that avoids errors based on the
incomprehensibility of the survey rather than the pattern under investigation.
We therefore decided to work with only one type of question, i. e., we asked
whether or not a given instantiated requirement in HanforPL is fulfilled by a
given example system behaviour. For each question, the requirement was given
as written text, while the example behaviour was depicted as timing diagram.
Skipping a question was not permitted. Figure 2 exemplarily shows the first
question that was asked to investigate the understanding of the ResponseDe-
lay pattern. Consecutively, we asked the same question for three more timing
diagrams (Fig. 3). That is, for each of the selected patterns, participants of the
study had to match four example system behaviours against an instantiated
requirement in HanforPL, yielding a total of 68 questions.

The order of questions in the survey and therefore the order of the require-
ments presented to the participants was static. Participants should be eased into
the language by a controlled encounter with the different features of the language,
from one observable, over several observables, timed quantification and so on.
Thereby preventing noise within the answers resulting from being overwhelmed
by a first occurrence of too many new concepts at once. Apart from the gradual
exposure to the language features, we assume that no relevant training effect is
present, as no feedback on the correctness of the answers was given.

To make the survey feasible within a time frame of about 30 to 40 min,
the survey includes a high number of example behaviours directly targeting the

28 E. Henkel et al.

(a) Correct answer: no. (b) Correct answer: yes.

(c) Correct answer: yes.

Fig. 3. Timing diagrams used to investigate the understanding of the ResponseDelay
pattern (Questions 11 B - D).

phrases of interest (see Table 3). Correct answers to these questions thus mean,
that the general behaviour of the pattern has been understood and the phrase
of interest was interpreted correctly (with respect to the formal semantics).

The survey does not investigate the understanding of different scopes. This
would introduce another level of complexity and hence require more questions to
be asked to infer reasons for possible incorrect answers. We therefore implicitly
instantiated all requirements with the scope globally.

4 Results

The study was completed by 37 participants with an average experience in
requirements engineering of 3.3, in HanforPL of 1.8, and in formal logics of
3.9 on a self assessment scale of 1 (not experienced at all) to 5 (very experi-
enced). The median age group was 41 to 50. One participant indicated that they
clearly misunderstood the given task as part of a feedback email. The described
answer set (all false) was clearly identifiable, and the participant was removed
as an outlier. Table 2 shows the detailed performance of all participants over all
patterns and questions.

Participants had to rate their familiarity with HanforPL in the beginning
of the survey (see Fig. 4). To investigate Research Question R1, we separate
the participants into two groups: The 26 participants being untrained in Han-
forPL (answering 1 in the related self assessment question) answered with 75%
accuracy (on average 51.1 of 68 questions answered correctly). The 10 partici-
pants that received former training in HanforPL (answering > 1 in the related
self assessment question) answered with 79% accuracy (on average 53.7 of 68
questions answered correctly).

Understanding of a Formal Pattern Language 29

Table 2. Survey results per pattern (listed in the order they occur in the survey) and
question (columns A,B,C,D).

Pattern Name Average of correct answers (%)

A B C D Total

Universality 94 100 100 100 99

Invariance 67 97 64 89 79

Initialization 94 100 100 83 94

Persistence 75 100 86 100 90

Precedence 97 53 78 89 79

DurationBoundL 14 100 92 81 72

DurationBoundU 89 14 92 97 73

ReccurrenceBoundL 97 83 86 92 90

UniversalityDelay 53 92 53 86 71

InvarianceBoundL2 64 58 92 61 69

ResponseDelay 47 89 81 89 76

ResponseDelayBoundL1 58 75 92 53 69

ResponseBoundL1 39 94 53 53 60

ResponseBoundL12 50 100 92 83 81

EdgeResponseBoundL2 97 56 17 86 64

EdgeResponseBoundU1 42 72 86 11 53

EdgeResponseDelayBoundL2 100 78 75 56 77

There is a slight, non-significant trend of training in HanforPL leading to
more correct answers (Pearson correlation of r(34) = 0.292 with p = 0.083). The
difference between both groups is statistically not significant (Mann-Whitney-U
U = 103 with p = 0.348). As both groups performed similar, we do not discern
between them in the following.

In the beginning of the study, participants had to give a self assessment of
their experience in formal logics as well as requirements engineering (relating to
R2). We assume that both disciplines give a solid foundation (be it in vocabulary
or concepts) for a better understanding of requirements pattern languages.

It turned out, that training in requirements engineering does at best show a
weak and statistically not significant trend (Pearson correlation of r(34) = 0.231
with p = 0.175). Astonishingly, the best and worst participants claimed to have
a high understanding for requirements engineering (see Fig. 5).

In contrast, experience in formal logic turned out to have a strong correlation
(Pearson correlation of r(34) = 0.647 with p < 0.0001) with the number of right
answers (see Fig. 6).

As the final research question (R3), we investigate the phrases of interest.
Detailed results from the relevant questions can be seen in Table 3. For each
phrase of interest, its related patterns and questions, the table shows the overall
result, as well as the results of participants with prior training in formal logic
(answering > 2 in the related self assessment question; n = 30) and with little
to no training in formal logic (answering ≤ 2; n = 6).

30 E. Henkel et al.

Table 3. Correctness results for the phrases of interest. Each row shows the according
phrase id, the pattern containing the phrase and which question in the survey prompted
that exact behaviour followed by the percentage of correct answers. Column N shows
participants with little to no, column L with training in formal logics.

ID Related pattern Question Correct

N (6) L (30) Overall

prev Precedence C 50 83 78

prev Precedence D 67 93 89

afterw ResponseBoundL1 D 0 63 53

afterw EdgeResponseBoundU1 B 50 77 72

afterw* ResponseBoundL1 C 33 57 53

afterw* ResponseBoundL12 A 33 53 50

afterw* EdgeResponseBoundU1 A 50 40 42

aam UniversalityDelay A 33 57 53

aam UniversalityDelay C 33 57 53

aam-cond ResponseDelay D 83 90 89

aam-cond ResponseDelayBoundL1 C 83 93 92

obs DurationBoundL A 17 13 14

obs DurationBoundU B 0 17 14

obs EdgeResponseBoundL2 C 0 20 17

obs EdgeResponseBoundU1 D 0 13 11

obs+ DurationBoundL C 100 90 92

obs+ DurationBoundU D 100 97 97

obs+ EdgeResponseBoundL2 D 83 87 86

obs+ EdgeResponseDelayBoundL2 B 83 77 78

rec ReccurrenceBoundL B 83 83 83

Table 4. Remainder of questions with high error rates not already covered by the
phrases of interest. Column N shows participants with little to no, column L with
training in formal logics.

ID Related pattern Question Correct

N (6) L (30) Overall

antec Invariance C 17 73 64

antec InvarianceBoundL2 D 17 70 61

atonce Precedence B 50 53 53

atonce ResponseDelay A 33 50 47

atonce ResponseDelayBoundL1 A 33 63 58

atonce ResponseDelayBoundL1 D 50 53 53

atonce ResponseBoundL12 A 33 53 50

Understanding of a Formal Pattern Language 31

Fig. 4. The influence of former training in HanforPL (x-Axis) on the number of
correct answers given (y-Axis).

Table 4 contains results of the remainder of questions with high error rates.
The errors from these questions can be attributed to two kinds of formulations
and underlying semantics used in the pattern language. For ease of reading, we
define these ad-hoc categories analogous to the phases of interest:

(antec) [...] if R holds, then S holds as well : This requirement’s semantic is
equal to the implication R → S, i.e., if R has to hold, then S has to hold as
well, but not vice versa.

(atonce) [...] if R holds, then S holds after at most T time units: In this
example, it is not clear if S is expected to be in real succession to R (as one
would expect for a causal relationship), or if both happening at the same time
is also valid behaviour. The latter is the case in HanforPL.

5 Discussion

The overall results regarding the understanding are positive, showing that most
patterns in HanforPL can be understood even without prior training in the
pattern language.

Results of 75% to 79% correct answers of participants untrained and trained
in the pattern language entail that generally more than every fifth answer to
questions of whether behaviour belongs to the system are erroneous. This inter-
pretation is heavily skewed as the survey is focused on phrases of interest, i.e.,
on edge cases which are prone to misinterpretation. Thus favouring participants
familiar with HanforPL as well as skewing the distribution of patterns heavily

32 E. Henkel et al.

Fig. 5. The influence of experience in requirements engineering (x-Axis) on the number
of correct answers given (y-Axis).

towards more complex patterns within the survey, that are used with far lower
frequency in practice. Requirements sets usual for industrial practice, as reported
by [12], mainly contain patterns that got high success rates. This is especially
the case for the Universality pattern and common applications of Invariance-
BoundL2 and ResponseDelay, i.e., excluding the answers to question A of the
latter pattern, (see Table 2). Therefore, we conclude, that HanforPL turned
out to be understandable, even for untrained participants.

Results show, that training in formal logic serves as a good predictor for the
comprehension of the requirements pattern. The explanation of this effect could
be twofold: For one, formal logics, especially temporal logics (e.g. LTL, MTL
or Duration Calculus) have similar interpretation of concepts like referring to,
e.g., a future state just requires just a non-zero interval (or one state) except
denoted differently. Thus, the everyday understanding of these terms is already
aligned with the formal meaning. Second, training in formal logics (in contrast
to requirements engineering) may allow for more detachment from the actual
physical system, i.e., ignoring the question as to what might happen before or
after the timing diagram.

Analysis of individual phrases allows to pinpoint phrases and concepts that
are not aligned with their everyday understanding (Table 3).

The results show, that (rec) and (prev) are unproblematic, as questions
regarding those phrases of interest were answered correctly by most participants.

For the phrase of interest in (afterw), i.e., the text S holds afterwards, par-
ticipants leaned on the side of S only holding for a non-zero interval which
matches the intended meaning (with 53% resp. 72% correct answers). For the

Understanding of a Formal Pattern Language 33

Fig. 6. The influence of experience in formal logics (x-Axis) on the number of correct
answers given (y-Axis).

ResponseBoundL1 D question, the divide between logically trained (63% correct)
versus untrained (0% correct) shows that there is a different understanding of
the phrases depending on training, i.e., all of the latter did assume that S has
to hold persistently. Again, disambiguation by including the word persistently in
pattern where this is the case should solve this case.

Regarding (afterw*), the question whether S has to hold immediately after
the trigger event (intended meaning), participants leaned to answer incor-
rectly (with 53%, 50%, resp. 42% correct answers). This result shows, that the
behaviour has to be made explicit. The uncertainty if S has to hold immediately
or at some arbitrary point (afterw*) should be addressed by including the word
immediately as part of the patterns.

All participants performed well on the phrasing of (aam-cond) if [...], then
S holds after at most T seconds. In contrast, for (aam) only 53% answered cor-
rectly, i.e., that the observable has to hold persistently. Thus, the interpretation
in (aam-cond) is in alignment with the common understanding, while the Unver-
salityDelay pattern containing the (aam) phrase should be changed to include
the phrase persistently to be [...] S holds after at most T seconds persistently.

The most recent addition to the pattern language is concerned with reaction
to changes of observables. Questions related to the phrase once R becomes sat-
isfied, [...] (obs+) were consistently answered correctly, i.e., the requirement has
to be evaluated after each time R becomes satisfied.

The question if an explicit rising edge is required (obs) and how especially
initial behaviour is treated was highly problematic (below 17% correct answers).
Answers were systematically given so, that the state of the system before the

34 E. Henkel et al.

timing diagram was the missing part to satisfy the change of the observable. As
we did not alter the observables, we did not include the negative case. Including
the negative case would have been beneficial in analysing if participants just
assumed that all observables are false in the beginning, or if any state was
possible that suited the interpretation.

Fig. 7. Example of a denying the antecedent
error in the survey.

The detailed results in Table 2
show a number of questions that
turned out to have a high error
rate. We assigned additional ad-hoc
phrases of interest: Low rates of right
answers in (antec) (see Table 4) could
be attributed to a common error when
dealing with implications, the deny-
ing the antecedent. For example, the
pattern it is always the case that if
R holds, then S holds as well is satisfied by the behaviour depicted in Fig. 7.
Nonetheless, S being true without R being true in time interval [2, 3] was seen
as a violation by 36% of participants, especially those with little to no train-
ing in formal logic (only 17% correct in both questions). For nine participants
(25%) the error was stable over both questions regarding (antec). This could
point to a systematic misunderstanding of implication, or at least a difference
in the understanding to the phrasing used for implication in this pattern. The
existence of systematic differences of understanding conditionals has been shown
by Fischbach et al. [6].

Fig. 8. Problems with immediate satisfac-
tion of a property.

A large number of errors stem
from cases in which everything rel-
evant happens at the same point in
time (atonce). An example is the
requirement if R holds, then S holds
after at most 1 second together with
the behaviour depicted in Fig. 8. One
can see that for time interval [0, 2] R
as well as S are true, i.e., the causal
relation, although it only needs to be
satisfied with a delay of at most one second, is satisfied immediately. This may
be again due to a notion of the requirements as more of a physical system, where
the trigger results in an action with a real causal delay.

Many of the problems detected in this study should be fixed by small changes
regarding the pattern language. As an immediate result of this study, several
improvements for the phrases of interest were suggested, as discussed above.
These modifications have to be verified carefully so, that the simplicity of the
sentences is not lost in an overly complex sequence of adjectives describing each
observable.

Understanding of a Formal Pattern Language 35

Similar to the argument in [3,14], a basic understanding of formal logic (bet-
ter formal methods in general) should be the best mitigation for misalignment in
the understanding of formal constructs such as the problems found with (antec).

Additionally, we include clarifications targeted on the misunderstandings
found in this survey in our training material.

6 Threats to Validity

6.1 Internal Validity

The threat of Repeated Testing is concerned with participants learning over the
run of an experiment. As participants were not informed if their answers were
correct, they should not have been able to gain information on the correct inter-
pretation of the pattern. An acclimatisation to the pattern language was intended
though in order to prevent participants from being overwhelmed with the more
complex pattern. As the survey was performed in an industrial context, Mat-
uration, i.e., changes over the duration of the survey can influence the results.
We tried to keep the survey as short as possible in order to prevent tiring and
impatience (or loss of participants) due to more pressing concerns. The threat
of Instrumentation is concerned with the influence of the experimental mate-
rial itself on the results. We tried to make the examples of system behaviour
as accessible as possible for the use by not formally trained participants [4].
Nonetheless, problems with phrases of interest starting in the beginning of the
timing diagram may have suffered from a notion of the system too commonly
associated with a real system, i.e., where there is always a previous state even if
switched off. To guarantee that the questions themselves do not contain errors,
all timing diagrams were automatically verified by the pattern simulator being
part of Hanfor.

6.2 Construct Validity

The threat of Interaction of setting and treatment is concerned with non-aligning
circumstances of experiment and reality. In fact, the experiment is presented in
a form focusing on the patterns itself, not on realistic requirements. In a real
setting, expressions over observables in pattern instantiations can add another
layer of complexity, that is abstracted away, to get data on the pattern them-
selves. In reality, the correctness numbers can be much lower as requirements get
considerably more complex. Nonetheless, the expression language is not likely to
have interactions with the phrasing of the surrounding pattern.

6.3 External Validity

The threat of Interaction of selection and treatment is concerned with the selec-
tion of non-representative participants. Our participants were selected by con-
tacting cooperation partners from different engineering divisions, and the chair

36 E. Henkel et al.

mailing list. This way, we tried to spread the risk of convenience sampling over
different businesses and person groups likely to be in a position or likely to be
in the near future of using a requirements pattern language.

7 Related Work

Winter et al. [15] conduct a survey on the understandability of quantifiers and
their negation (such as all, more than or at least) in natural language require-
ments. Results show, that there are significant effects on reading speed and
error rate between the different quantifiers and their negated forms. Based on
the results, advice for writing requirements is given. This recent work shows
the relevance of investigations into the understanding of requirements in gen-
eral. Phrasings are chosen once and reproduced in each instantiation, i.e., any
problem introduced to a pattern is multiplied over a requirements specification.
Therefore, ensuring understanding by a broad audience is even more relevant.

Giannakopoulou et al. [7] address the problem of pattern understanding by
presenting several representations of the instantiated requirement, both graphi-
cal and as formal logic, e.g. LTL. This is a necessary support for error recovery
by comparison to the intended result, while the pattern language should itself
prevent errors in the first place by being aligned with the intuitive understanding
of the patterns.

A different approach is taken by Moitra et al. [10], designing the requirements
language in the style of a programming language. This surely aligns the intuitive
understanding with stakeholders from a computer science background, but may
exclude other stakeholders entirely, because of the condensed syntax.

8 Conclusion

In this paper, we demonstrated how an inquiry on the alignment of the formal
semantics of the HanforPL and the intuitive understanding of requirements
engineers can help to understand and improve the pattern language. Almost
half of the patterns considered in the survey are contained in the SPS by [13].
Parts of the results can therefore be generalized to SPS-like languages.

The analysis results are positive, and the pattern language performed very
well in hiding the formal complexity behind intuitively understandable sentences.
Nonetheless, the language contains several phrases that lead to near random
decisions, and misconceptions of logic can lead to misinterpretations that cannot
be mitigated entirely by phrasing. We suggested several improvements through
the analysis.

This study was a short, industry friendly foray into the comprehensibility of
HanforPL. In the short term, the pattern of HanforPL will be improved by
the suggested changes. Based on this study, future work will be to design a more
thorough investigation of the patterns, especially in conjunction with scopes.
The basis of this extended survey could be a mutation based scenario generator
to do the tedious work of generating different classes of scenarios. While the

Understanding of a Formal Pattern Language 37

examination of each pattern is of immediate use for requirements engineering,
the question remains if we can evaluate the meaning of single words (e.g. after
and once), or if their meaning is heavily influenced by the context in which they
occur.

Acknowledgements. We thank all participants, and Amalinda Post for forwarding
the study.

References

1. Becker, S., et al.: Hanfor: semantic requirements review at scale. In: REFSQ Work-
shops. CEUR Workshop Proceedings, vol. 2857. CEUR-WS.org (2021)

2. Berry, D.M., Kamsties, E.: The syntactically dangerous all and plural in specifica-
tions. IEEE Softw. 22(1), 55–57 (2005)

3. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06410-9 4

4. Dietsch, D., Feo-Arenis, S., Westphal, B., Podelski, A.: Disambiguation of indus-
trial standards through formalization and graphical languages. In: RE, pp. 265–270.
IEEE Computer Society (2011)

5. Dietsch, D., Langenfeld, V., Westphal, B.: Formal requirements in an informal
world. In: 2020 IEEE Workshop on Formal Requirements (FORMREQ), pp. 14–
20. IEEE (2020)

6. Fischbach, J., Frattini, J., Mendez, D., Unterkalmsteiner, M., Femmer, H., Vogel-
sang, A.: How do practitioners interpret conditionals in requirements? In: Ardito,
L., Jedlitschka, A., Morisio, M., Torchiano, M. (eds.) PROFES 2021. LNCS, vol.
13126, pp. 85–102. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
91452-3 6

7. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

8. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: ICSE, pp. 372–
381. ACM (2005)

9. Langenfeld, V., Dietsch, D., Westphal, B., Hoenicke, J., Post, A.: Scalable analysis
of real-time requirements. In: RE, pp. 234–244. IEEE (2019)

10. Moitra, A., Siu, K., Crapo, A.W., et al.: Towards development of complete and
conflict-free requirements. In: RE, pp. 286–296. IEEE (2018)

11. Post, A., Hoenicke, J.: Formalization and analysis of real-time requirements: a
feasibility study at BOSCH. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 225–240. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27705-4 18

12. Post, A., Menzel, I., Hoenicke, J., Podelski, A.: Automotive behavioral require-
ments expressed in a specification pattern system: a case study at BOSCH. Requir.
Eng. 17(1), 19–33 (2012)

13. Post, A.C.: Effective correctness criteria for real-time requirements. Ph.D. thesis,
University of Freiburg (2012)

https://www.CEUR-WS.org
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/978-3-030-91452-3_6
https://doi.org/10.1007/978-3-030-91452-3_6
https://doi.org/10.1007/978-3-030-44429-7_2
https://doi.org/10.1007/978-3-642-27705-4_18
https://doi.org/10.1007/978-3-642-27705-4_18

38 E. Henkel et al.

14. Westphal, B.: On education and training in formal methods for industrial crit-
ical systems. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS,
vol. 12863, pp. 85–103. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85248-1 6

15. Winter, K., Femmer, H., Vogelsang, A.: How do quantifiers affect the quality of
requirements? In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi, S. (eds.) REFSQ
2020. LNCS, vol. 12045, pp. 3–18. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-44429-7 1

16. Yang, H., Roeck, A.N.D., Gervasi, V., Willis, A., Nuseibeh, B.: Analysing anaphoric
ambiguity in natural language requirements. Requir. Eng. 16(3), 163–189 (2011)

https://doi.org/10.1007/978-3-030-85248-1_6
https://doi.org/10.1007/978-3-030-85248-1_6
https://doi.org/10.1007/978-3-030-44429-7_1
https://doi.org/10.1007/978-3-030-44429-7_1

Supporting Shared Understanding
in Asynchronous Communication Contexts

Lukas Nagel1(B) , Oliver Karras2 , Seyed Mahdi Amiri1,
and Kurt Schneider1

1 Software Engineering Group, Leibniz Universität Hannover, Hannover, Germany
{lukas.nagel,kurt.schneider}@inf.uni-hannover.de,

m.amiri@stud.uni-hannover.de
2 TIB - Leibniz Information Centre for Science and Techology, Hannover, Germany

oliver.karras@tib.eu

Abstract. [Context andmotivation] The success of software projects
depends on developing a system that satisfies the stakeholders’ wishes
and needs according to their mental models of the intended system. How-
ever, stakeholders may have different or misaligned mental models of the
same system, resulting in conflicting requirements. For this reason, aligned
mental models and thus a shared understanding of the project vision is
essential for the success of software projects. [Question/problem]While
it is already challenging to achieve shared understanding in synchronous
contexts, such as meetings, it is even more challenging when only asyn-
chronous contexts, like messaging services, are possible. When multiple
stakeholders are involved from different locations and time zones, primar-
ily asynchronous communication occurs. Despite the frequent use of soft-
ware tools, like Confluence, to support asynchronous contexts, their use
for the development of a shared understanding has hardly been analyzed.
[Principal ideas/results] In this paper, we propose five concepts to help
stakeholders develop a shared understanding in asynchronous communi-
cation contexts. We assess the adaptability of three existing software tools
to our concepts, adapt these software tools accordingly, and develop our
own prototype that implements all five concepts. In an experiment with
30 participants, we evaluate these four software tools and compare them
to a control group that had no support in developing a shared understand-
ing. [Contribution] Our results show the suitability of our concepts, as
the participants using our concepts were able to achieve a higher level of
shared understanding compared to the control group.

Keywords: requirements engineering · shared understanding ·
asynchronous communication

1 Introduction

A shared understanding of the project vision is paramount to the success of soft-
ware projects, as its absence can lead to conflicting requirements [31]. Achieving
this shared understanding is one of the key challenges in requirements engi-
neering [14]. For this purpose, stakeholders must disclose, discuss, and align
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 39–55, 2023.
https://doi.org/10.1007/978-3-031-29786-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_3&domain=pdf
http://orcid.org/0000-0001-5003-2340
http://orcid.org/0000-0001-5336-6899
http://orcid.org/0000-0002-7456-8323
https://doi.org/10.1007/978-3-031-29786-1_3

40 L. Nagel et al.

their mental models of the intended system to achieve a shared understand-
ing [3]. However, stakeholders are often spread across different locations and
time zones [22]. In this case, primarily asynchronous communication occurs, as
stakeholders can hardly meet for synchronous in-person or even virtual meet-
ings [13]. One way to achieve a shared understanding in asynchronous com-
munication contexts is to distribute a written specification using standards like
ISO/IEC/IEEE 29148:2018 [16]. Nevertheless, reading a written specification can
be time-consuming due to its low communication richness and effectiveness [1].
For project visions specifically, a richer and more effective way for achieving a
shared understanding is the use of so-called vision videos [21].

Vision videos support the development of a shared understanding, as they
provide visual reference points to stimulate active discussions among stakehold-
ers to align their mental models [17]. They are primarily used to support the
elicitation, documentation and validation of requirements [21]. Nagel et al. [25]
have successfully used vision videos to find misaligned mental models in asyn-
chronous settings. However, simply watching a vision video without the oppor-
tunity to discuss its contents complicates the resolving of misalignments [25]. For
this reason, stakeholders need suitable support for their discussions to achieve a
shared understanding in asynchronous communication contexts.

The goal of this paper, which is based on a master’s thesis by Amiri [2], is
to develop suitable concepts to support stakeholders in achieving a shared under-
standing in asynchronous communication contexts.

In this paper, we propose five corresponding concepts that are designed to
solve issues with asynchronous communication extracted from literature. We
combine these concepts with vision videos to investigate whether they support
stakeholders in achieving a shared understanding. Three existing software tools
for asynchronous communication are assessed regarding their adaptability to our
concepts and adapted accordingly. We also develop a prototype that implements
all five concepts. In an experiment with 30 participants, we evaluate the four
software tools and establish a baseline. Our results show evidence for the suit-
ability of our concepts. All software tools support the achievement of a shared
understanding. In particular, participants supported by our adaptation of the
messaging service Discord and our developed prototype presented a statistically
significantly higher level of shared understanding compared to the control group.

This paper is structured as follows: Sect. 2 discusses related work. We present
our concepts in Sect. 3 and describe their implementation on existing tools
in Sect. 4. In Sect. 5, we provide details on our experiment, whose results are
reported in Sect. 6. Section 7 shows threats to validity. Our results are discussed
in Sect. 8 before the paper is concluded in Sect. 9.

2 Related Work

Several works address achieving a shared understanding among stakeholders in
requirements engineering. Glinz and Fricker [14] discuss the role of shared under-
standing in software engineering and identify enablers and obstacles. They also

Supporting Shared Understanding in Asynchronous 41

introduce implicit and explicit shared understanding. One technique to support
the achievement of a shared understanding is the use of vision videos presenting
the project vision. The term vision video has been defined by Schneider et al.
[28] as a video of a software-based system typically showing a problem, an envi-
sioned solution, and its impact, pretending the solution already exists. Creighton
et al. [9] introduced the use of videos to visualize scenarios by presenting work-
flows that are not yet implemented. Brill et al. [6] expanded on this idea by
investigating potential uses of videos in various phases of requirements engineer-
ing. The potential use of vision videos on multimedia platforms like YouTube has
already been discussed by Schneider and Bertolli [27]. Karras et al. [19] inves-
tigated the use of vision videos on social-media platforms for CrowdRE. The
videos motivated crowd members to provide feedback.

Another use case of videos in asynchronous settings is e-learning. Skylar [29]
investigated the performance of students in synchronous and asynchronous online
courses and found both to be effective. Furthermore, Clark [7] found one of
the biggest advantages of asynchronous communication to be the opportunity
for reflective thought processes in between messages. A work by Dowling and
Lewis [11] discusses further disadvantages of both communication types. They
mention the time pressure of synchronous meetings, which might lead to impor-
tant contributions being missed. However, the temporal linearity of asynchronous
communication is missing due to the distribution of comments on the same topic.
A response could therefore be separated from the original comment, which ham-
pers discussants following a discussion topic.

Braunschweig and Seaman [5] developed a technique to measure the shared
understanding achieved by a group of stakeholders using Pathfinder Networks
(PFNets). To use this technique, stakeholders fill out a spreadsheet with relat-
edness ratings of concept pairs. These ratings are then used to create graphs
called PFNets as introduced by Dearholt and Schvaneveldt [10]. Shortest paths
can be calculated by using the relatedness ratings as edge weights. The PFNets
of a pair of stakeholders can be compared by determining the similarity of the
neighborhoods of individual concept-nodes. Calculating the average of all con-
cept similarities between two PFNets, a Network Similarity (NetSim) value for
a stakeholder pair can be obtained.

3 Concepts for Supporting Shared Understanding

For the development of concepts supporting the achievement of a shared under-
standing among stakeholders communicating asynchronously, we collected com-
mon issues of asynchronous communication from existing literature. Based on
these issues, we brainstormed concepts to minimize the impact of these issues.
The concepts introduced in this paper are based on the master’s thesis by
Amiri [2]. Table 1 presents an overview of the identified issues and our concepts
addressing them. In the following, we explain each concept in more detail.

Questions of Understanding: We adopt the concept of Questions of Under-
standing from the related work by Nagel et al. [24]. These questions ensure that

42 L. Nagel et al.

Table 1. Overview of our Concepts and the Issues they look to solve.

Concepts Issues

Questions of Understanding
Differing Domain Knowledge [14,25]
Misunderstandings [11,12,25]

Message Frames
Misunderstandings [11,12,25]
Missing valuable Ideas [11,25]
Sequential Ordering of Messages [11]

Req. Engineers as Facilitators
Missing valuable Ideas [11,25]
Free-Riders [32]

Polls
Missing valuable Ideas [11,25]
Reaching Final Conclusions [32]

Step-By-Step Design Coordination of Steps [15,30]

all stakeholders understand the presented content of an artifact correctly and
clarify domain-specific terminologies. Differing from prior research, we propose
to force stakeholders to answer Questions of Understanding before being allowed
to take part in a discussion. In this way, we can ensure that all discussion mem-
bers have a basic understanding of the presented content.

Requirements Engineers as Facilitators: Synchronous meetings are often
held under the guidance of a moderator who guides the participants [18,33]. A
traditional moderator role cannot be present in asynchronous communication.
However, the active and collaborative participation of all stakeholders, that can
be motivated by a moderator [33], is still vital for achieving a shared understand-
ing [4]. We therefore propose to have requirements engineers play a facilitating
role in asynchronous communication. This can be done by providing some initial
questions or reacting to comments made by stakeholders to motivate them to
participate even more. However, requirements engineers should remain neutral
in discussions so that stakeholders can reach final conclusions on their own.

Message Frames: A logical and sequential ordering of individual sentences is
important to enable humans to reach conclusions from conversations [11]. Our
concept of Message Frames looks to implement this idea on asynchronous com-
munication, where such sequential orderings are hard to follow [11]. Message
Frames are a filter for incoming information that structures outgoing messages.
In asynchronous communication, the order of messages does not necessarily have
to follow the order of discussion topics. Stakeholders can start a topic and return
to the discussion after other stakeholders have commented with ideas on other
topics. When messages regarding the same topic are located in widely differ-
ent positions in the ordering of messages, it is hard for stakeholders to follow
a discussion [11]. This issue is especially prevalent when the number of discus-
sants and messages increase. Message Frames summarize comments dealing with
the same topic in a logical order. For example, a requirements engineer could
summarize all comments regarding the topic of “security” in one Message Frame.

Supporting Shared Understanding in Asynchronous 43

This makes it easier for stakeholders to finalize their thoughts on any given topic.
Message Frames can thereby lead to more explicit shared understanding.

Polls: Polling is one possibility to reach definitive conclusions at the end of a
discussion [32]. Polls can turn implicit shared understanding into explicit shared
understanding [14]. We recommend using the Paraphrasing Method [14] to cre-
ate the polling questions. By paraphrasing the comments made by the par-
ticipants and asking for their feedback before enabling the polls, requirements
engineers can ensure that there are no misunderstandings [14]. Additionally, we
propose that stakeholders can suggest additional polling questions themselves.
This allows them to directly ask their peers about unresolved uncertainties. A
potential side benefit of the use of polls is that they can also be used to gather
an initial indication of a group’s level of shared understanding. Groups of stake-
holders giving the same answer to a polling question are likely to have a higher
level of shared understanding than other groups giving more diverse answers.

Step-By-Step Design: Another drawback of asynchronous communication
is the difficulty of coordinating the stakeholders [15]. Important steps could
be performed in different orders, thereby creating a chasm between individual
knowledge bases. Providing an explicit process is one way to counteract this
phenomenon [15]. Therefore, we propose an enforcement of such a process. At
first, our concepts only allow stakeholders to get familiar with the content of
the presented artifact. Their next step is to answer questions of understanding,
thereby ensuring that they have a common knowledge base. Stakeholders are only
allowed to contribute to the discussion once they answer all questions of under-
standing correctly. Furthermore, our concepts also include fixed time frames for
the existing steps. One task of moderators in synchronous meetings is to lead
participants through the phases of the agenda within a given time [33]. We incor-
porate this aspect by providing fixed time frames for each step of the process.
Stakeholders are thereby kept from delaying their participation. Simultaneously,
the fixed time frames also provide requirements engineers with a concrete time
at which feedback regarding the presented content will be available.

4 Implementation of Concepts

We developed a prototype that implements all five concepts to evaluate their suit-
ability to our goal. We also assessed the adaptability of existing software tools for
asynchronous communication, as preexisting familiarity with these tools could
reduce the barrier of entry for stakeholders. An important factor in the choice of
software tools was their capability to display a vision video. The video must be
directly visible in the software tool so that stakeholders do not need to switch
between applications to reduce their cognitive load [20]. We conducted a work-
shop with three participants to discuss different types of software tools and to
choose individual representatives for our experiment. In this workshop, a total of
10 different software tools were discussed. Each participant was asked to identify
advantages and disadvantages of the tools. Ultimately, we asked the workshop

44 L. Nagel et al.

participants to pick three tools they considered to be best suited to the support
of stakeholders in the asynchronous achievement of a shared understanding using
vision videos. The multimedia platform YouTube, the wiki service Confluence,
and the messaging service Discord were selected as the most suitable existing
software tools. More information on the workshop can be found in the master
thesis by Amiri [2] which this paper is based on. Table 2 presents an overview
of the concepts and the manner in which they were implemented for each tool.
The following paragraphs present the implementation of the concepts Questions
of Understanding, Polls and Step-By-Step Design. Our concepts Requirements
Engineers as Facilitators and Message Frames were not implemented as techni-
cal adaptations of the tools, but as tasks of the requirements engineer’s role.

Table 2. Overview of the applicability of our concepts to each tool. Applicabiltiy: �
fully, © partially, and only manually * For YouTube, Polls had to be applied using
a third party tool.

Concept YouTube Confluence Discord Prototype

Questions of � � � �
Understanding

Requirements Engineers
as Facilitators

Message Frames
Polls * �
Step-By-Step Design �

YouTube: YouTube provides built-in functionality for the presentation of video
content. With over 2.1 billion worldwide users1, most stakeholders should be
familiar with the system. YouTube offers a comment system which provides
functionality to answer previously made comments and to reference other users.
YouTube also includes a description section in which more context can be given.
We used this description section to provide the order of steps and the Ques-
tions of Understanding. However, there was no way to enforce the Step-By-Step
Design or to hold Polls. While the Like and Dislike functionality of comments
could be used, YouTube does not display the exact votes and would be limited
to yes or no questions. Third party tools are required for other Polls and for the
answering of Questions of Understanding.

Confluence: Confluence includes functionality to organize knowledge on pages
and a comment system. Videos can be embedded directly on these pages. We
created one page to view the video, one page to answer Questions of Understand-
ing, one page for the comment section, and one final page for polling questions.
In this way, we partially implement the Step-By-Step Design. However, the order
of steps could not be enforced. There was also no built-in functionality for Polls.
Instead, a suite of plugins is available within Atlassian’s marketplace.
1 https://www.statista.com/topics/2019/youtube/#dossierKeyfigures.

https://www.youtube.com/
https://www.atlassian.com/de/software/confluence
https://www.discord.com/
https://www.statista.com/topics/2019/youtube/#dossierKeyfigures

Supporting Shared Understanding in Asynchronous 45

Discord: Discord allows its users to create “Servers” for free. Servers consist of
text and voice channels only available to invited users. Voice channels can be
joined for conference calls. Text channels offer functionality to write messages,
upload files, and embed images. Discord users can reference other messages or
other users and pin messages to make them easier findable. Threads can be
created that appear as a single message in the original chat history, but can
be expanded into a new window with its own set of messages. This allows for a
separation of especially important topics. We made use of these threads to imple-
ment our concept of Questions of Understanding by asking them in a separate
thread. For the Step-By-Step Design, we pinned a message detailing the order
of steps within the text channel. However, we could not enforce the compliance
with this order. Discord also does not offer built-in functionality for polling. For
this reason, we use free plugins that enabled our concept of Polls.

Prototype: The existing tools evaluated in this paper offer functionality suited
to some of our concepts. However, none of them could be adapted to include
all concepts to their full extent. For this reason, we developed a prototype that
implements all five concepts. The prototype was implemented as a single page
application, a screenshot of which can be found in Fig. 1. The prototype always
displays the vision video at the top of the screen (1). Stakeholders can click
through the pages of the prototype (2), which represent the Step-By-Step Design.
Some pages only unlock after performing prior steps. The main area of the pro-
totype displays the selected page’s content (3). When providing new comments,
stakeholders are required to give a headline to assist requirements engineers in
the creation of Message Frames.

Fig. 1. Screenshot of the prototype presenting the Experiment Procedure page.

46 L. Nagel et al.

5 Experiment

A user study was conducted to evaluate our concepts for our research goal (cf.
Sect. 1). Based on this goal, we defined the following two research questions.

RQ1: How suited are the six concepts to the support of stakeholders in
achieving a shared understanding in asynchronous communication contexts?
RQ2: Which software tools are best suited to provide this support?

5.1 Experiment Design

Material: Our study utilizes a vision video2 on future mobility produced by
Hyundai and published on YouTube as the basis for all discussion topics. To
enable the use of the four software tools mentioned in Sect. 4, members of the
treatment groups were provided with new e-mail addresses and user accounts.
We thereby preserved their privacy and lowered the barrier of entry.

Furthermore, each participant was provided with a link to a spreadsheet
that was used to perform the PFNets method lined out in Sect. 2. Both the
link to the spreadsheet and a second link to a questionnaire were distributed
at the end of their participation. The questionnaire asked participants about
their opinions on the suitability of asynchronous communication for the achieve-
ment of a shared understanding and their preference between synchronous and
asynchronous communication methods. Another document guiding participants
during their participation in the study was also provided. Since none of the par-
ticipants had previously worked with the PFNets method, this guideline included
information on the use of the spreadsheet and an example. The spreadsheet is
available on Zenodo [23].

Participant Selection: We performed convenience sampling to recruit the
participants for our study. Participation was not mandatory. A total of 30 par-
ticipants took part in the study. All participants were active university students
in Germany. Our only requirement for our participant selection was a functioning
computer on which to watch the vision video, answer the questionnaire and fill
out the PFNets spreadsheet. We were looking to include potential stakeholders
for the topic of future mobility. Therefore, anyone participating in modern traffic
is a viable participant.

Experiment Procedure: The study was conducted online over a total of five
days, with each group participating on a single day. Participants were assigned
to groups based on personal availability. Our only influence on these assignments
was limited to the selection of time slots for participants whose availability was
suited to multiple groups. The study was performed strictly online due to the
Covid-19 pandemic. We performed an experiment session with a control group of
6 participants to establish a baseline. Members of this control group were asked to
2 https://www.youtube.com/watch?v=J_OBgXalGFU.

https://www.youtube.com/watch?v=J_OBgXalGFU

Supporting Shared Understanding in Asynchronous 47

view the vision video on their own and had no support to discuss with any other
group members. They were also explicitly asked to work on the spreadsheets on
their own to ensure the validity of their answers. We designed the control group
without any means of communication to measure the level of shared understand-
ing that is created by simply watching the same vision video. To the best of our
knowledge, no methodology for the achievement of a shared understanding in
asynchronous communication contexts exists. Therefore, our study was designed
to create a baseline of shared understanding when watching vision videos while
also investigating the differences between supporting communication tools.

For members of the treatment groups, the study consisted of two distinct
time windows. To ensure a strictly asynchronous setting, no participants were
scheduled to take part at the same time. Participants were asked to perform
the same set of steps during the two time windows. However, there were some
differences in terms of the available functionality as outlined in Sect. 4.

In the first time window, participants were asked to watch the vision video for
the first time before answering six Questions of Understanding. Participants were
explicitly asked to answer these questions first before proceeding. However, this
requirement could only be enforced in the prototype. Lastly, participants were
allowed to leave comments and add to existing parts of the discussion. Between
the two time windows, the experimenter scanned through the comments and
created Message Frames. Polling questions were also determined.

The second time window started by providing the Message Frames before
participants answered the polling questions. For the treatment group supported
by YouTube, this was done via telephone. Next, each participant was asked to
read the submitted comments and respond to them. After all participants had
finished the second time window, they were asked to review the results of the
Polls before answering the questionnaire and filling in the PFNets spreadsheet.

Data Analysis Procedures: To answer our research questions, we created
two sets of hypotheses. Each set is designed to answer one research question.
The first set of hypotheses aims at finding differences between each of the four
treatment groups and the control group:

H1i.0: There is no difference in the shared understanding of participants
between the control group and the treatment group supported by i.

i ∈ {Y ouTube, Confluence,Discord, Prototype}

The second set deals with the differences between the different supporting tools.
For example, we look to find a difference between the treatment group commu-
nicating via YouTube and the one being supported by the prototype:

H2j.0: There is no difference in the shared understanding of participants
between a and b.

j = (a, b) with a, b ∈ {Y ouTube, Confluence,Discord, Prototype}, a �= b

48 L. Nagel et al.

To find data on which to base a potential rejection of these null hypotheses,
we analyzed the PFNets spreadsheets filled out by our participants according
to Braunschweig and Seaman [5]. Their technique resulted in network similar-
ity (NetSim) values for all participant pairs. These were then used to calculate
average NetSim values for each group and to calculate the statistical signifi-
cance of differences in the achieved shared understanding between the groups.
The statistical significance was determined by first testing for normal distribu-
tion using the Shapiro-Wilk test before applying the Mann-Whitney U test or
the t-test, depending on the presence of a normal distribution. We also applied
the Bonferroni-Holm correction. In addition, we extracted the results of the Polls
and gathered answered questionnaires. For the Polls, we determined which choice
was made by the majority of participants, before averaging the number of par-
ticipants who were part of this majority for each poll performed in the respective
treatment group. This resulted in the average size of the majority vote for each
group. We analyzed the answers to the questionnaires descriptively.

6 Results

Our study focuses on measurements for the shared understanding within each
group of the experiment. Furthermore, we also obtained information on partici-
pants’ thoughts on the suitability of asynchronous communication contexts and
their general opinion on the software tool they were supported by.

NetSim: We measured the shared understanding within the groups of our
experiment using the aforementioned PFNets method. The results are available
on Zenodo [23]. As our results were normally distributed for all groups, we used
the t-test. The results of the Shapiro-Wilk test can be found in Table 3.

Table 3. Results of Shapiro-Wilk tests. Note that the sample size for a group of 6
participants is 15 as we obtained similarity values for each participant pair.

Tool W(15) p Normal Distribution?

Control 0.889 0.067 Yes
YouTube 0.785 0.965 Yes
Confluence 0.969 0.841 Yes
Discord 0.969 0.842 Yes
Prototype 0.933 0.302 Yes

To test the set Hypotheses H1, we compared the values calculated for the control
group with the values measured for each other software tool. We found statisti-
cally significant differences between the control group and the treatment groups
supported by Discord and our prototype (cf. Table 4).

Hypotheses H2 were tested by determining the statistical significance of differ-
ences between the treatment groups. Such differences were found between the
group supported by the prototype and all other treatment groups (cf. Table 5).

Supporting Shared Understanding in Asynchronous 49

Table 4. Results for Hypotheses H1. The column Corrected p presents the p-values
resulting from the Bonferroni-Holm correction.

H1i.0 Tool
NetSim

p Corrected p
Reject

Min Max Avg H1i.0?

N/A Control 0.118 0.533 0.250 N/A N/A N/A
H11.0 YouTube 0.105 0.476 0.297 0.12205 0.12205 No
H12.0 Confluence 0.160 0.467 0.307 0.05776 0.11552 No
H13.0 Discord 0.211 0.556 0.360 0.00401 0.01203 Yes
H14.0 Prototype 0.357 0.538 0.458 <0.00001 <0.001 Yes

Table 5. Results for Hypotheses H2. The column Corrected p presents the p-values
resulting from the Bonferroni-Holm correction.

H2j Tool A Tool B p Corrected p Reject H2j.0?

H21 YouTube Confluence 0.39055 0.39055 No
H22 YouTube Discord 0.05919 0.17757 No
H23 YouTube Prototype 0.00002 <0.001 Yes
H24 Confluence Discord 0.06814 0.17757 No
H25 Confluence Prototype <0.00001 <0.001 Yes
H26 Discord Prototype 0.00211 0.00844 Yes

To gain a better understanding of the magnitude of the differences between the
examined groups, we calculated the effect sizes for all comparisons that were
positively tested for statistical significance. The results of these calculations can
be found in Table 6.

Table 6. Effect sizes for statistically significant differences between groups. We inter-
pret the calculated values according to Cohen [8] and Sawilowsky [26].

Hypothesis Group A Group B Cohen’s d Interpretation

H13 Control Discord 1.047 Large
H14 Control Prototype 2.354 Huge
H23 YouTube Prototype 1.789 Very large
H25 Confluence Prototype 1.976 Very large
H26 Discord Prototype 1.135 Large

Polls: Polls were created based on the discussion of each group. The groups
supported by YouTube, Confluence and the prototype were asked eight polling
questions each, while the group supported by Discord answered seven. We found
average majority sizes of 72.6% for YouTube, 78.8% for Confluence, 71.1% for
Discord and 76.8% for the group supported by the prototype.

50 L. Nagel et al.

Fig. 2. Answers to the questionnaire regarding the suitability of asynchronous com-
munication (a) and participants’ preference between asynchronous and synchronous
communication (b).

Questionnaire: The questionnaire consisted of questions regarding the general
suitability of asynchronous communication contexts for discussing an artifact. The
first question asked participants how suitable they thought asynchronous com-
munication was for the discussion of a vision video’s content. No statistically sig-
nificant differences could be found between the groups. Out of 24 participants, 6
answered neutrally.All other 18 participants indicated that they agreed or strongly
agreed that asynchronous communication is suitable. An overview of these results
can be found in Fig. 2a. A second question addressed the preference between asyn-
chronous and synchronous communication. Once again, no statistically significant
differences could be found. The answers were diverse for all treatment groups. In
total, no participant strongly preferred synchronous communication, while 5 par-
ticipants indicated that they preferred synchronous communication and 5 partic-
ipants answered neutrally. A total of 9 participants preferred asynchronous com-
munication, with an additional 5 participants strongly preferring asynchronous
communication. A visual representation of these results can be found in Fig. 2b.
In addition to questions answered on Likert scales, we also asked open questions
regarding positive andnegative aspects of asynchronous communication.Themost
often mentioned positives were having enough time to think, developing ideas and
the temporal flexibility. Negative aspects included delayed answers and missed
comments, as well as the longer time required for final conclusions. The final ques-
tion asked for opinions on a statement, indicating Questions of Understanding as
valuable.Once again, no statistically significant differences could be foundbetween
the treatment groups. Only a single participant strongly disagreed, while 2 other
participants gave neutral answers. 12 participants agreed with the statement, and
a further 9 participants agreed strongly.

7 Threats to Validity

We report the threats to validity of our results according to Wohlin et al. [34].
The conclusion validity of our results is threatened by the small sample size.

Having only six participants per treatment group increases the risk of statistical
noise impacting the results. However, we chose to include three existing soft-
ware tools in our evaluation rather than increase the sample size for only one

Supporting Shared Understanding in Asynchronous 51

or two, as we obtained three clear favorites in the workshop. Another threat
to the conclusion validity is the fact that we asked participants who had only
discussed the vision asynchronously about their preference between synchronous
and asynchronous communication. Nevertheless, it is easy for participants to
imagine synchronous discussions and the answers to the open questions of the
questionnaire gave concrete reasons for this preference.

One threat to the internal validity of our study is the potential of exhausted
participants giving incomplete answers. Participants of our study were asked
to work in two time windows and asked to fill in multiple documents over the
course of a day. We chose this type of study to reliably simulate an asynchronous
setting and also gave participants a lengthy break between the time windows.
Furthermore, participants could in theory have interacted with one another out-
side of the asynchronous communication tools. We minimized this threat by
creating new accounts without any identifying information for all participants
on all software tools used in the study.

A threat to the construct validity is the mono-method bias. We chose not to
include further metrics to avoid an even higher potential for participant exhaus-
tion. Another threat is that participants might understand the same term differ-
ently when filling in the PFNets spreadsheet. We only included terms that were
short and clearly visible in the vision video to minimize this threat. Additionally,
we only simulated the presence of different time zones by assigning distinct time
frames to all participants. An experiment including multiple time zones would
have been preferable, but was not feasible.

The external validity of our results is that participants knew that they were
taking part in an experiment. A study with practitioners in a real-world use case
would have been preferable. Another threat is the potential that we might have
missed a suitable existing tool. However, we tried to minimize this threat by
conducting the workshop and discussing the results with multiple researchers.
Furthermore, the experiment was conducted over the course of a single day while
a real-world application would likely be performed over the course of multiple
days. We accepted this threat as the threat of participant exhaustion might have
been increased further, had we conducted a multi-day study.

8 Discussion

The results of our study show clear differences between the achieved level of
shared understanding among the participants of the five groups. In particular,
we found that all treatment groups supported by one of the four software tools
(YouTube, Confluence, Discord, and the prototype) achieved a higher average
level of shared understanding than the control group. This finding is indicated
by the higher average NetSim values, as a higher NetSim value indicates a higher
level of shared understanding [5]. When comparing the results of the treatment
groups, we found that the group supported by the prototype achieved a statis-
tically significantly higher level of shared understanding than every other treat-
ment group (cf. H23.1, H25.1 and H26.1).

52 L. Nagel et al.

These results substantiate the suitability of our concepts to support stake-
holders in achieving a shared understanding in an asynchronous communication
context. First, all software tools, even adapted with only a partial implementa-
tion of our concepts, result in a higher level of shared understanding than the
control group. In accordance with the results of Nagel et al. [25], our results show
the importance of enabling discussions between stakeholders in asynchronous set-
tings. Even partial concepts already help to achieve a better understanding, as
they improve stakeholders’ capabilities to communicate with each other. Second,
implementing all concepts to their full extent (as in the prototype) provides a
solid basis for achieving a higher level of shared understanding. In all four soft-
ware tools, we tried to implement each concept as fully as possible. However, for
the three existing tools, we had no access to their source code and thus had to
make compromises, such as using plugins, to enable the concept as intended. In
contrast, the prototype allowed us to implement and combine the concepts to
reach their full potential. For this reason, the main difference between the proto-
type and the adapted software tools is the degree to which the concepts could be
implemented. While the results show that even the partial implementations lead
to a higher shared understanding than the control group, the prototype achieved
the best results overall with effect sizes ranging from large to huge [8,26]. We
assume that the main reason for these results is the concept Step-By-Step Design.
This concept provides a structured framework for all other concepts. For exam-
ple, the prototype enforces the answering of Questions of Understanding before
participants can access the comment section due to the Step-By-Step Design.
In this way, the full implementation of the Step-By-Step Design emphasized the
importance of these questions and ensured that the participants are familiar
with the video content before writing any comment. As a consequence, the con-
cepts were better integrated and combined, resulting in a higher level of shared
understanding of stakeholders. Based on these insights, we provide the following
answers to our research questions:

Answer to RQ1: The concepts presented in this paper are suited to the
support of stakeholders in achieving a shared understanding in an asyn-
chronous communication context. Our participants indicated that Questions
of Understanding and the Step-By-Step Design were especially meaningful.

Answer to RQ2: We found Discord to be the most suited existing tool for
being adapted to our concepts. However, the group supported by our proto-
type achieved an even higher level of shared understanding that is statisti-
cally significantly different from all other treatment groups. Further devel-
opment of the prototype to achieve shared understanding in asynchronous
communication contexts is a promising endeavor for future research.

Besides the analysis of the shared understanding among the stakeholders
in the respective groups, we also investigated the participants’ attitude towards

Supporting Shared Understanding in Asynchronous 53

the idea of being supported in achieving a shared understanding in asynchronous
communication contexts. According to our results, most of them preferred the
use of asynchronous communication contexts over synchronous ones. They jus-
tified this decision with a higher flexibility to take their time to think about the
presented vision and for the development of questions, answers, and ideas for the
discussion with the other stakeholders. This finding is in line with the advantages
of asynchronous communication contexts found by Dowling and Lewis [11].

However, the generalizability of our results is limited. The groups of partici-
pants supported by each software tool are probably smaller than in a real-world
setting. In addition, the participants had no real value in understanding the
presented vision due to the fictitious experimental context. Nevertheless, our
concepts are a promising starting point for future research. On the one hand,
future work needs to investigate how each concept individually contributes to a
shared understanding, as we only investigated all concepts together. On the other
hand, we observed difficulties in the experiment such as language barriers and
terminology issues for which we only have the partial solutions of a Step-By-Step
Design combined with mandatory Questions of Understanding.

In summary, our results reveal the value of asynchronous communication
contexts. Stakeholders are able to disclose, discuss and align their mental models
within an asynchronous context to achieve a shared understanding. An even
higher level of shared understanding can be accomplished when using the full
extent of our concepts. We conclude that the concepts described in this paper
fulfill our goal. In this way, we developed suitable concepts to support stakeholders
in achieving a shared understanding in asynchronous communication contexts.

9 Conclusion

A shared understanding between stakeholders is vital for successful software
projects. The discussion of vision videos present one possible way to achieve
such a shared understanding, even in asynchronous settings. However, these dis-
cussions depend on asynchronous communication methods. In this paper, we
presented concepts to support achieving a shared understanding between stake-
holders in asynchronous communication contexts. We adapted existing software
tools and developed a prototype according to our concepts and conducted a user
study. This study substantiates the suitability of our concepts for supporting
shard understanding in asynchronous communication contexts.

In future research, we plan to increase the sample size of our study to obtain
more reliable results. We also plan on evaluating our concepts in isolation and
to compare our results to the shared understanding created in a synchronous
meeting. For the concepts Requirements Engineers as Facilitators and Message
Frames we seek to investigate how requirements engineers can be supported while
performing the associated tasks. Furthermore, the PFNets spreadsheet could be
extended with terms relating to the topics discussed by the groups. The findings
of this paper indicate the potential of our concepts. Further research efforts might
lead to a definitive tool supporting the achievement of a shared understanding
among stakeholders in asynchronous settings.

54 L. Nagel et al.

Acknowledgement. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) under Grant No.: 289386339, project ViViUse.

References

1. Ambler, S.: Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. Wiley, New York (2002)

2. Amiri, S.M.: Konzeptionierung eines Tools zur Herstellung gemeinsamen Verständ-
nisses durch asynchrone Betrachtung von Vision Videos. Master thesis, Leibniz
Universität Hannover (2022)

3. Aranda, J.: A theory of shared understanding for software organizations. University
of Toronto (2010)

4. Bittner, E.A.C., Leimeister, J.M.: Why shared understanding matters-engineering
a collaboration process for shared understanding to improve collaboration effective-
ness in heterogeneous teams. In: 46th Hawaii International Conference on System
Sciences. IEEE (2013)

5. Braunschweig, B., Seaman, C.: Measuring shared understanding in software project
teams using pathfinder networks. In: 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (2014)

6. Brill, O., Schneider, K., Knauss, E.: Videos vs. use cases: can videos capture
more requirements under time pressure? In: International Working Conference
on Requirements Engineering: Foundation for Software Quality. Springer, Cham
(2010)

7. Clark, C., Strudler, N., Grove, K.: Comparing asynchronous and synchronous video
vs. text based discussions in an online teacher education course. Online Learn.
19(3) (2015)

8. Cohen, J.: Edition 2. Statistical power analysis for the behavioral sciences (1988)
9. Creighton, O., Ott, M., Bruegge, B.: Software cinema - video-based requirements

engineering. In: 14th IEEE International Requirements Engineering Conference
(2006)

10. Dearholt, D.W., Schvaneveldt, R.W.: Properties of Pathfinder Networks. Ablex
Publishing Corp, Norwood (1990)

11. Dowling, K.L., Louis, R.D.S.: Asynchronous implementation of the nominal group
technique: is it effective? Decis. Support Syst. 29(3), 229–248 (2000)

12. Garrison, D.R.: E-Learning in the 21st Century: A Community of Inquiry Frame-
work for Research and Practice. Routledge, New York (2016)

13. Girgensohn, A., Marlow, J., Shipman, F., Wilcox, L.: HyperMeeting: supporting
asynchronous meetings with hypervideo. In: 23rd ACM international conference
on Multimedia (2015)

14. Glinz, M., Fricker, S.A.: On shared understanding in software engineering: an essay.
Comput. Sci. Res. Dev. 30(3), 363–376 (2015)

15. Hiltz, S.R., Dufner, D., Holmes, M., Poole, S.: Distributed group support systems:
social dynamics and design dilemmas. J. Organ. Comput. Electron. Commer. 1(2),
135–159 (1991)

16. ISO Central Secretary: Systems and software engineering - Life cycle processes -
Requirements engineering. Standard ISO/IEC/IEEE 29148:2018 (2018)

17. Karras, O.: Supporting Requirements Communication for Shared Understanding
by Applying Vision Videos in Requirements Engineering. Logos (2021)

Supporting Shared Understanding in Asynchronous 55

18. Karras, O., Kiesling, S., Schneider, K.: Supporting requirements elicitation by tool-
supported video analysis. In: 24th International Requirements Engineering Con-
ference. IEEE (2016)

19. Karras, O., Kristo, E., Klünder, J.: The potential of using vision videos for Crow-
dRE: video comments as a source of feedback. In: 29th International Requirements
Engineering Conference Workshops. IEEE (2021)

20. Karras, O., Risch, A., Schneider, K.: Interrelating use cases and associated require-
ments by links: an eye tracking study on the impact of different linking variants
on the reading behavior. In: 22nd International Conference on Evaluation and
Assessment in Software Engineering (2018)

21. Karras, O., Schneider, K., Fricker, S.A.: Representing software project vision by
means of video: a quality model for vision videos. J. Syst. Softw. 162, 110479
(2020)

22. Lloyd, W.J., Rosson, M.B., Arthur, J.D.: Effectiveness of elicitation techniques in
distributed requirements engineering. In: IEEE Joint International Conference on
Requirements Engineering. IEEE (2002)

23. Nagel, L., Amiri, S.M.: Supplementary Material - Supporting Shared Understand-
ing in Asynchronous Communication Contexts, February 2023. https://doi.org/10.
5281/zenodo.7649336

24. Nagel, L., Karras, O.: Keep your stakeholders engaged: interactive vision videos in
requirements engineering. In: IEEE 29th International Requirements Engineering
Conference Workshops. IEEE (2021)

25. Nagel, L., Shi, J., Busch, M.: Viewing vision videos online: opportunities for dis-
tributed stakeholders. In: IEEE 29th International Requirements Engineering Con-
ference Workshops (2021)

26. Sawilowsky, S.S.: New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8(2),
26 (2009)

27. Schneider, K., Bertolli, L.M.: Video variants for CrowdRE: how to create linear
videos, vision videos, and interactive videos. In: IEEE 27th International Require-
ments Engineering Conference Workshops. IEEE (2019)

28. Schneider, K., Busch, M., Karras, O., Schrapel, M., Rohs, M.: Refining vision
videos. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp.
135–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4_10

29. Skylar, A.A.: A comparison of asynchronous online text-based lectures and syn-
chronous interactive web conferencing lectures. Issues Teach. Educ. 18(2), 69–84
(2009)

30. Smith, J.Y., Vanecek, M.T.: Dispersed group decision making using nonsimultane-
ous computer conferencing: a report of research. J. Manage. Inf. Syst. 7(2), 71–92
(1990)

31. Van Lamsweerde, A.: Requirements engineering in the year 00: a research perspec-
tive. In: 22nd International Conference on Software Engineering (2000)

32. Warkentin, M., Beranek, P.M.: Training to improve virtual team communication.
Inf. Syst. J. 9(4), 271–289 (1999)

33. Wheeler, B.C., Valacich, J.S.: Facilitation, GSS, and training as sources of process
restrictiveness and guidance for structured group decision making: an empirical
assessment. Inf. Syst. Res. 7(4), 389–490 (1996)

34. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Cham (2012). https://doi.org/10.
1007/978-3-642-29044-2

https://doi.org/10.5281/zenodo.7649336
https://doi.org/10.5281/zenodo.7649336
https://doi.org/10.1007/978-3-030-15538-4_10
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Bringing Stakeholders Along for the Ride:
Towards Supporting Intentional
Decisions in Software Evolution

Alicia M. Grubb1(B) and Paola Spoletini2(B)

1 Smith College, Northampton, MA, USA
amgrubb@smith.edu

2 Kennesaw State University, Marietta, GA, USA

pspoleti@kennesaw.edu

Abstract. [Context and Motivation] During elicitation, in addition to
collecting requirements, analysts also collect stakeholders’ goals and the
present and historical interests that motivate their goals. This infor-
mation can guide the resolution of requirements conflicts, support the
evolution of requirements when changes occur (e.g., environmental con-
straints), and inform decisions in software design. [Problem] Unfortu-
nately, this information is rarely explicitly represented and maintained.
When a stakeholder is modeled in the literature, the captured informa-
tion is only part of that stakeholder’s intention (i.e., the goals and the
present and historical interests that motivate those goals) and not other
requirements documents. In addition, such representations of a stake-
holder are not traced and kept aligned with the design and, thus, cannot
be used during iterative development and in case of changes. [Princi-
pal Idea] To support engineers in making informed decisions during the
design, development, and evolution of a system, we propose a framework
to collect and maintain intentionality in an efficient and effortless way.
[Contributions] To define intentionality, disambiguate it from its use in
literature, and position it in relation to similar concepts (i.e., rationale
and goals), we conduct a literature review. Based on our derived defi-
nition, we present our framework to appropriately include intentionality
throughout the stages of a project and the research agenda to realize
such a framework.

Keywords: Intentionality · Traceability · Software development

1 Introduction and Motivation

For over two decades, within goal-oriented requirements engineering (GORE),
there has been a concerted effort to capture and document the needs of stake-
holders and their interdependencies with respect to the system [13]. Thus, stake-
holders’ needs and motivations have been seen as an important piece of the
requirements process and there has been significant work on capturing these
needs in the form of models. However, these needs and motivations are often

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 56–64, 2023.
https://doi.org/10.1007/978-3-031-29786-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_4&domain=pdf
http://orcid.org/0000-0002-3552-3165
http://orcid.org/0000-0001-7922-4936
https://doi.org/10.1007/978-3-031-29786-1_4

Bringing Stakeholders Along for the Ride 57

lost in the transition from requirements to system design and are not followed
downstream. In a systematic literature review of how GORE approaches are
used in downstream activities, Horkoff et al. found only one of the top 50 cited
papers looked at decision making [13]. This paper, by Wang et al., looks at
monitoring the satisfaction of requirements at runtime [18]. In addition to the
work by Wang et al., there have been multiple efforts to connect requirements
with downstream activities and run-time monitoring [4,7,17], as well as work
to automatically link customer wishes with requirements [9]. While the GORE
literature offers a foundation for our framework, the importance of stakehold-
ers needs spans the entire field of requirements; thus, we create a generalizable
framework, independent of requirements approach.

In this paper, we argue for the inclusion of the underlying motivation of
stakeholders, which we call intentionality (see Sect. 2 for a definition), through-
out the development and maintenance of software, independent of whether or
not a GORE methodology is initially used. We begin by understanding in what
capacity intentions are being captured and where in the software lifecycle (e.g.,
elicitation, modeling, design, or development) they are being lost. Additionally,
we look at what similar concepts and terminology exist and how they are con-
nected (e.g., design rationale [8]).

Contributions and Organization. We propose a framework, called Intention
Guided Requirements Engineering (ING-RE), that elicits, models, and maintains
stakeholders’ intentionality, for the purpose of supporting decision making. Our
intellectual contribution explores four research questions:

RQ0: To what extent has intentionality been captured in RE literature?
RQ1: How can analysts retain information about stakeholders’ intentionality for

use across the software life cycle using existing techniques?
RQ2: To what extent is intentionality currently traced between software arti-

facts? and how can it be added?
RQ3: How and to what extent can we use stakeholders’ intentions to make

decisions during software evolution?

In this paper, we make three contributions: (1) In Sect. 2, we complete an
initial literature review to define the notion of an intention. (2) In Sect. 3, we
present the ING-RE framework and describe how it embeds intentions in the
software lifecycle, and how intentions can be used to support the analysis of
requirements downstream. (3) In Sect. 4, we present our research agenda and
our plan to develop ING-RE. Finally, we conclude in Sect. 5.

2 Defining Intentionality

We begin by addressing RQ0. We conducted an initial light-weight literature
review, following the guidelines by Kitchenham [14], to understand how inten-
tions are being captured in the literature. We used Scopus1 to find papers asso-
ciated with this concept using the search string:
1 Scopus’ coverage is considered optimal when compared to other databases (e.g.,

IEEE Xplore, ACM Digital library) [15].

58 A. M. Grubb and P. Spoletini

TITLE-ABS-KEY ((intent* OR motivation*) AND (“software engineering” OR
(requirement* AND engineering)) AND (requirement*) AND (goal*) AND (
stakeholder* OR user*)) AND (LIMIT-TO (DOCTYPE , “ar”) OR LIMIT-TO
(DOCTYPE , “cp”)) AND (LIMIT-TO (SUBJAREA , “COMP”)) AND (
LIMIT-TO (LANGUAGE , “English”))

Scopus returned 135 matches for our search string. The material generated in
the literature review is available at: doi.org/10.35482/csc.001.2023 . With the
help of our research assistants (see acknowledgments), we assessed the papers
as within scope or out of scope (i.e., Yes, Maybe, No), based on the paper title
and abstract. The papers were divided equally among the assistants. All papers
labeled as ‘Maybe’ were discussed as a group with assistants and authors. Then,
the assistants checked each others reviews (i.e., checking 40 papers) to ensure
they were consistent and reported concerns. Two concerns were raised, but in
both the original assessment was deemed appropriate. Of the 135 initial matches,
71 were selected for content analysis. After the content analysis, an additional
20 papers were excluded, 10 because they were not relevant for the context of
this work and 10 because they did not contain any fragment of text that, even
informally, defined “intention” or other related terms. For each of the remaining
51 papers, we analyzed and extracted fragments of text related to intentionality.

More than 60% of them contain an informal definition of an intention. In
almost half of these cases, a brief definition such as “intention, i.e., goals, soft-
goals, tasks, and resources” is given. In more than 20% of the analyzed papers,
intentions are associated with a call to action to reach a targeted state. This is
also in line with our analysis of the fragments about goal modeling (where often
the stakeholders’ intentions are seen as the targeted states and the needs behind
the creation of the system goals). Interesting emerging themes from our tex-
tual analysis are emotions and emotional goals [3]—including values, emotional
state, and “personality as players” in the motivations of the stakeholders. These
concepts are not in contrast with the most common “definition” of intention but
highlight the importance of considering the personal dimensions of stakeholders
while elucidating their motivations.

Using the definitions and themes that emerged in our literature review and
the concept of intentionality defined and discussed philosophically in [1], we
define intentionality as the underlying motivations for the ‘wants’ and
‘needs’ of stakeholders that guide the design and development of the
system under consideration. This definition is in line with the assimilation
of intention into goal model elements when emotional goals and personal factors
are also considered.

Stakeholders’ intentions can be mistakenly identified as the rationale for a
requirement or as the goals or aims of a project. While these concepts often
overlap and even coincide in some circumstances, in general, intentions define
different types of explanations associated with the users’ underlying motivations
while the rationale is the final reason that guided the definition of a requirement
and captures “the reasoning underlying the creation and use of artifacts” [8].

Bringing Stakeholders Along for the Ride 59

3 ING-RE: Supporting Intentionality

Intentionality is not always explored during elicitation, especially when analysts
concentrate on the system. These motivations add relevant details to the col-
lected needs that can be used during the development process to make more
informed decisions. For example, being able to distinguish if a request has its
roots in budget considerations or the company’s historical behaviors can help
stakeholders negotiate between competing needs, as well as help engineers make
the most appropriate design choice, create appropriate acceptance tests, and
understand the impact of a change in a product. Additionally, when elicited,
intentions are rarely documented and, thus, not used to make design decisions.

Concrete Example: Volume Adjustment. A team is upgrading their tele-
conferencing phone to allow it to work with video conferencing software (e.g.,
Teams, Zoom). As part of this upgrade, the team is deciding which features to
incorporate into a touch-screen and which features to implement with physical
components. As part of this analysis, they conduct a focus group with potential
users. Table 1 lists the requirements (r1–r5) elicited from stakeholders. While
each stakeholder has different preferences for the aims of the system, they all
want the system to be able to adjust the speaker volume. Taking a closer look,
Alex and Jesse’s requests have similar underlying motivations. They both want
to be able to use the system without having to focus on the interface. Jesse
prefers being able to adjust the volume physically until the sound is heard at
an appropriate level and wants to adjust it very precisely (r4); whereas, Alex
has an underlying motivation of finding it difficult to learn new systems and
multi-task during meetings (r2). Angelo wants the interface to be usable when
others have sticky fingers (r3). Yet, John, in device manufacturing, wants as
few physical components as possible to reduce cost (r3). When choosing how
to design the interface, it is important to consider the underlying motivation
of each stakeholder. Even if a strictly digital interface is chosen, these “whys”
should be retained and influence the design of the interface.

We propose the ING-RE framework to support the analysts in incorporating
stakeholders’ intentions from the beginning of the development process (RQ1),
adding traceability links throughout the project (RQ2), and using intentions to
make more informed decisions when considering proposed changes and compet-
ing ideas (RQ3). These aspects are described in the remainder of this section.

Eliciting and Representing Intentions. Ideally, intentionality needs to be
elicited when requirements are collected and then maintained throughout the
life of the software. Once collected, stakeholders’ intentions can be documented
alongside the requirements, independent of technique. We propose using a natu-
ral language based structured language to limit difficulties in representing inten-
tions, while allowing for some automated analysis of the resulting information.
To enable the inclusion of multiple whys, we define I as the set of intention
triples 〈s,m, u〉, where s represents the stakeholder who had the intention, m
represents the intention (i.e., motivation), and u represents the status of that
intention in the current state of the design.

60 A. M. Grubb and P. Spoletini

Table 1. Digital touch panel requirements and their underlying motivation.

Requirements Intentions triples
〈Stakeholder, motivation, status〉

r1. The interface shall allow for the
adjustment of the speaker volume

i1:〈John, Input volume may vary., Queue〉

r2. The speaker volume shall be static and
always available

i2:〈Alex, Difficulty navigating interfaces
under pressure., Queue〉

r3. The speaker volume shall be adjusted
via the touch screen

i3:〈Angelo, Ease of daily cleaning., Queue〉,
i4:〈John, Reduce manufacturing cost.,
Queue〉

r4. The speaker volume shall be adjusted
via a physical dial

i5:〈Jesse, Experienced issues with sound
feedback in the past system., Queue〉

r5. The speaker volume shall be adjusted
via physical buttons (i.e., volume up,
volume down, mute/unmute)

i6:〈Alex, John, Compromise between
manufacturing costs and navigation needs.,
Queue〉

In this paper, we assume that the intention m is expressed as a structured
natural language sentence, and the status u assumes values in {In,Past,Queue}:
In signifies that the intention is currently being considered in the design process,
Past is used if the intention was considered in the past but is not part of the
current set, and Queue indicates that the intention has never been considered.

For each of the requirements in our volume adjustment example, we include
the 〈s,m, u〉 triples elicited during the focus group in the right-hand column of
Table 1. An example of a complex intention that can be generated with our triples
is i3 ∧ i4 associated with r3, indicating that both i3 and i4 are considerations for
requirement r3.

Intentions as a Tool for Decision Making. Intentions can be a powerful tool
for making decisions in the context of conflicting needs and design choices, as
well as when making changes to systems. Equivalent solutions for a requirement
might not be equivalent with respect to the motivations for the requirement.
We introduced above a representation of intentions and their associated stake-
holders as a triple 〈s,m, u〉. If this information is matched with tradeoffs for
the requirements or design, then we enable engineers to consider intentionality
when making these tradeoff decisions both during initial implementation and
maintenance.

We develop and evaluate two possible approaches to making trade-off deci-
sions with multiple intentions: (1) pruning requirements and (2) retaining
requirements. In our volume adjustment example, r1 and r2 are accepted as
requirements and added to the specification. Yet, r3–r5 are mutually exclusive
and the team must select the appropriate requirement to implement. In the
first approach r5 is retained and the intention expression associated with r5 is
i6 − {i3, i4, i5}. In the second approach, the requirement intention mappings are
preserved as listed in Table 1. In addition to the specification, consisting of r1,
r2, and r5, a collection of pruned requirements {r3, r4} is retained as alternatives
to r5 for further traceability.

Bringing Stakeholders Along for the Ride 61

Having this information also allows engineers to conduct further elicitation
and seek clarification from stakeholders when a change may violate their stated
intentions. Automatic analysis of intentions could assist engineers in decision-
making without requiring them to gather additional input from stakeholders.
For example, if the original concern is budgetary, engineers can consult the
project budget directly without reconnecting with the original stakeholder of
the intention.

Design models primarily store information about how the system will be
built, as well as how stakeholders interact with the system. Design rationale
already focuses on storing the reasoning for design decisions, which can be asso-
ciated with the designer’s intentions. Our framework can embed certain design
rationale into our representation of intentionality, by treating the designer’s
intentions synonymously with the intentions of other stakeholders.

Tracing Intentions.Next, we take a wider view and consider how we can build on
the extensive traceability literature to implement traceability of intentions across
the software lifecycle. Requirements traceability is the “ability to describe and fol-
low the life of a requirement, in both a forward and backward direction” [12], and
is critical for maintaining consistency between the different models used in the
system lifecycle [11]. Traceability connects entities before and after transforma-
tions, and between levels of abstraction. Work has focused on creating traceability
links between the requirements for a system and the design artifacts, and ideally
the complete implementation [1,16]. This includes the specification ofwhat should
be built (i.e., features) and any constraints for consideration. While the state-of-
the-art in modeling and traceability has looked at tracing non-functional require-
ments [17], traceability does not include information about the underlying motiva-
tion for why features exist, even when (partially) elicited during the requirements
process [13]. Traces are used to preserve design knowledge, support the integration
of changes, and prevent misunderstandings. For these reasons, intentionality, once
specified as part of the requirements, will become connected with the design (and
implementation) via traceability links.

4 Research Agenda

In this section, we present our agenda for developing the ING-RE framework.

Validate Intention Definition. We defined intentionality based on the results
of our initial literature review in Sect. 2. Our initial search string was limited
and missed papers about intentionality (e.g., [5,10]). Going forward, we need
to validate our definition with a full systematic literature review. Additionally,
although the initial motivation for this work stemmed from the GORE literature,
we believe that the concept of intentionality has ramifications beyond GORE
approaches. We will compare our definition with other intention ontologies in
GORE [5] and further juxtapose intentionality with rationale [8].

Theoretical Contribution. In Sect. 3, we presented our initial idea to formalize
simple and complex intentions, taking into account the fact that more than one

62 A. M. Grubb and P. Spoletini

intention can motivate a single aim, and that not all intentions may be considered
in the decision process. This initial proposal needs to be further investigated to
determine which is the best approach (i.e., pruning or retaining requirements, see
Sect. 3) for preserving alternatives in decision making. Our validation efforts will
include evaluating both the coverage (i.e., how many common scenarios can be
represented) and usability (i.e., the perceptions of analysts and designers when
using it) of our framework. We will evaluate coverage through a set of case studies
of the most common circumstances, and usability through interviews with experts.

Prototype. We will build a prototype that allows for users to trace and retain
intentionality during requirements specification, as well as development. When
requirements are selected for a project, their intentions are retained using the
set I (see Sect. 3). In the event of a change in the system, engineers can review
the affected requirements and underlying intentions. For a given change if the
original intention cannot be maintained, then it becomes part of the neglected
intentions (or requirements) going forward. This decision process relies on tool
support, which we develop, for evaluating the satisfaction of the intention when
the requirements they are connected with change. By defining our intention
formalism on top of propositional or first order logic, we can build our tooling on
top of existing SMT solvers. Given the dominance of the Agile paradigm, we build
our prototype on top of an open-source sprint management tool (e.g., MyCollab,
Odoo). In the case of approach (2) (see Sect. 3), we extend the paradigm of the
product backlog [6] to preserve requirements that were not selected. We extend
the prior work on expressing rationales within requirements [2,9].

Classification for Types of Intentions. We observed that while stakehold-
ers’ intentions can be articulated in many different ways and come from different
contexts, they can be reduced to similar roots (i.e., the type of intention). In
our volume adjustment example, John expressed budgetary concerns in i4. In a
different example, a stakeholder may be resistant to adding new features because
they have budgetary concerns for the project. Both these examples have similar
root-causes, i.e., budgetary concerns. Budget-related intentions are just one of a
few types we have identified with our initial brainstorming. Other examples are
historic, regulatory, and technology-related intentions. Identifying and classify-
ing most, if not all, types of intentions may suggest what information is needed
to evaluate the impact of a change and assist in the decision process. We aim
to add this type of classification to the ING-RE framework. We plan to ana-
lyze historical problems and brainstorm possible intentions behind the identified
needs to collect a data bank of intentions, as well as understand if any associa-
tions exist between intention types and NFRs. The procedure for type-specific
decision making will be developed in consultation with domain experts, who can
reason about how different types of intentions may evolve.

Limitations and Risks. The main limitation of our current proposal is
that ING-RE only provides an approach for new systems and does not offer
any support for existing systems when intentions were not explicitly collected
during elicitation or captured requirements documents were not maintained.

Bringing Stakeholders Along for the Ride 63

This creates a risk that ING-RE will not reach broad applicability. To mitigate
this risk, in our long-term agenda, we plan to study how to extract stakeholders’
intentionality from available artifacts. Extracting intentions strictly depends on
which artifacts are available in the given system. Additionally, we need to miti-
gate concerns from analysts about the extra overhead in documenting intentions
during the requirements process, which is also part of our long-term agenda.

5 Summary

In this research preview, we proposed the ING-RE framework for capturing and
retaining stakeholders’ intentions, for use across the software lifecycle. Our liter-
ature review demonstrates that intentions are an important concept in require-
ments engineering, but may not be retained for later use. In our research agenda,
we outlined the planned research steps to make ING-RE a reality through the
design of lightweight tools and a series of empirical studies. Our aim in this pre-
view is to gain feedback from the RE community and foster collaborations with
researchers of existing approaches, in order to complete extensive validation of
our framework across multiple paradigms.

Acknowledgments. Bobi Arce Mack, Cyrine Ben Ayed, Annie Karitonze, and Megan
H. Varnum assisted in conducting the literature review.

References

1. Agouridas, V., Simons, P.: Antecedence and consequence in design rationale sys-
tems. AI EDAM 22(4), 375–386 (2008)

2. Al-Alshaikh, H.A., Mirza, A.A., Alsalamah, H.A.: Extended rationale-based model
for tacit knowledge elicitation in requirements elicitation context. IEEE Access 8,
60801–60810 (2020). https://doi.org/10.1109/ACCESS.2020.2982837

3. Alatawi, E., Mendoza, A., Miller, T.: Psychologically-driven requirements engineer-
ing: A case study in depression care. In: 2018 25th Australasian Software Engineer-
ing Conference (ASWEC), pp. 41–50 (2018)

4. Bencomo, N., et al.: Requirements reflection: Requirements as runtime entities. In:
Proceedings of ICSE 2010, pp. 199–202 (2010)

5. Bernabé, C.H., Silva Souza, V.E., Almeida Falbo, R., Guizzardi, R.S.S., Silva, C.:
GORO 2.0: Evolving an ontology for goal-oriented requirements engineering. In:
Guizzardi, G., Gailly, F., Suzana Pitangueira Maciel, R. (eds.) ER 2019. LNCS,
vol. 11787, pp. 169–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34146-6 15

6. Bik, N., Lucassen, G., Brinkkemper, S.: A reference method for user story require-
ments in agile systems development. In: 2017 IEEE 25th International Require-
ments Engineering Conference Workshops (REW), pp. 292–298 (2017). https://
doi.org/10.1109/REW.2017.83

7. Borgida, A., Dalpiaz, F., Horkoff, J., Mylopoulos, J.: Requirements models for
design- and runtime: A position paper. In: Proceedings of MiSE 2013, pp. 62–68
(2013)

https://doi.org/10.1109/ACCESS.2020.2982837
https://doi.org/10.1007/978-3-030-34146-6_15
https://doi.org/10.1007/978-3-030-34146-6_15
https://doi.org/10.1109/REW.2017.83
https://doi.org/10.1109/REW.2017.83

64 A. M. Grubb and P. Spoletini

8. Burge, J.E., Carroll, J.M., McCall, R., Mistrik, I.: Rationale-Based Software Engi-
neering. Springer (2008)

9. Nattoch Dag, J., el al.: Speeding up requirements management in a product soft-
ware company: Linking customer wishes to product requirements through linguistic
engineering. In: Proceedings of RE 2004, pp. 283–294 (2004)

10. Duijf, H., Broersen, J., Meyer, J.J.C.: Conflicting intentions: Rectifying the con-
sistency requirements. Philos. Stud. 176, 1097–1118 (2019)

11. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engineer-
ing. In: Proceedings of EDOC 2007, pp. 313–313 (2007)

12. Gotel, O.C., Finkelstein, C.: An analysis of the requirements traceability problem.
In: Proceedings of RE 1994 (1994)

13. Horkoff, J., et al.: Using goal models downstream: A systematic roadmap and
literature review. Int. J. Inf. Syst. Model. Des. 6(2), 1–42 (2015)

14. Kitchenham, B.: Procedures for performing systematic reviews. Tech. rep., Keele
University and National ICT Australia Ltd. (ISSN: 1353-7776) (2004)

15. Mart́ınez-Fernández, S., et al.: Software engineering for AI-based systems: A survey.
ACM TOSEM 31(2), 1–59 (2022)

16. Nair, S., de la Vara, J.L., Sen, S.: A review of traceability research at the require-
ments engineering conferencere@21. In: Proceedings of RE 2013, pp. 222–229 (2013)

17. Vierhauser, M., Cleland-Huang, J., Burge, J., Grünbacher, P.: The interplay of
design and runtime traceability for non-functional requirements. In: Proceedings
of International Symposium on Software and Systems Traceability (SST), pp. 3–10
(2019)

18. Wang, Y., McIlraith, S.A., Yu, Y., Mylopoulos, J.: An automated approach to
monitoring and diagnosing requirements. In: Proceedings of ASE 2007, pp. 293–
302 (2007)

Understanding the Role
of Human-Related Factors in Security

Requirements Elicitation

Sanaa Alwidian1 and Jason Jaskolka2(B)

1 Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa,
ON, Canada

sanaa.alwidian@ontariotechu.ca
2 Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

jason.jaskolka@carleton.ca

Abstract. Context and motivation: Many requirements engineering
(RE) activities depend not only on the nature of the system itself, but also
on human-centric characteristics of the RE teams.

Question/problem: What role do human-related factors of RE teams
play in eliciting high-quality security requirements?

Principal ideas/results: This research preview presents our preliminary
work in discovering the cognitive factors that represent the intentions and
motivations of RE teams to develop secure systems from early stages of
the system development, and how these factors impact the quality of the
elicited requirements. We outline a framework, with an illustrative exam-
ple, for describing the variables that affect the decisions of RE teams when
they elicit security requirements to address security concerns.

Contribution: The proposed framework helps to characterize the dif-
ferent aspects of human-related factors, and the correlation between the
impact of these factors on the quality of the requirements elicitation phase.
This is a novel research direction which positions our long-term research
agenda, and we urge community contributions in this direction to achieve
an enhanced understanding of the role of human-related factors in require-
ments engineering for security domains.

Keywords: Human factors · Requirements engineering · Security ·
Cognitive models · Security requirements · Elicitation

1 Introduction

Requirements engineering (RE) is an inherently human-centric process. RE teams
are tasked with eliciting requirements that will shape the quality of the developed
system. Often, RE teams have varying levels of expertise needed to elicit high qual-
ity requirements. By high-quality requirements, we mean those requirements that
reflect a good understanding of stakeholders’ needs. Through the process of require-
ments elicitation, a good strategy to understand users’ needs is to answer the three
W’s questions: “What are we doing?”, “Why are we doing it?”, and “Who is going
to benefit from what we are doing?”. Further, high-quality requirements should be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 65–74, 2023.
https://doi.org/10.1007/978-3-031-29786-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_5&domain=pdf
http://orcid.org/0000-0003-4706-0134
http://orcid.org/0000-0001-6316-3040
https://doi.org/10.1007/978-3-031-29786-1_5

66 S. Alwidian and J. Jaskolka

unambiguous (i.e., avoid the use of indefinable terms like flexible, user friendly),
attainable (i.e., feasible to implement within the allocated budget and timeline),
testable (i.e., testing teams should be able to verify if a requirement has been cor-
rectly implemented or not), and traceable (i.e., provide the ability to follow the
entire life cycle of requirements starting from design up to deployment, and to
trace their relationship with other entities.). Finally, high-quality requirements
are those that are simple, specific, concise, and comprehensive by nature. Security
requirements elicitation must also consider the awareness of the team members
with respect to threats and vulnerabilities, so that adequate protection goals can
be determined for critical system assets [12].

Studying human-related factors (HRF) and their impact on the development
of a secure system is essential to understanding the role that humans play in these
processes. These factors must consider individual human behaviours as well as
the social structures that enable collective action by communities of various
sizes, and the different types of public and private institutional assemblages that
shape societal responses. Considering the various perspectives of stakeholders in
the system development life cycle (SDLC) and improving collaboration is noted
as a key contributor to more effective security assurance for software systems [12].

In this paper, we focus on characterizing the HRFs (e.g., by studying profiles
and cognitive constructs) of requirements engineers. To achieve this, we propose
a framework comprised of several models to describe the variables that affect
the decisions of RE team members when they elicit security requirements to
address security concerns. The overall objective of the proposed framework is to
discover the cognitive factors that represent the intentions and motivations of
RE teams for developing secure systems from early stages of the SDLC, and how
these factors impact the quality of the elicited security requirements. Hence, we
are not concerned with the usability aspect of the system unless users express
usability concerns alongside security concerns as stakeholders.

2 Related Work

Several works have looked to improve understanding of HRFs in the security
context by exploring the skills, knowledge, and behaviours of those involved in
developing secure systems [1,5]. A conceptual model to structure HRF models
in the context of security was proposed by Kruger and Kearney [14]. The model
served as the basis to build a tool for assessing information security awareness
(ISA). The concepts were organized around the three dimensions: knowledge
(what you know), attitude (what you think), and behaviour (what you do).
Each dimension was then subdivided in a set of security concerns targeted by
the measurement of the ISA in the respective organization. The factors were
then used to evaluate the expertise and experience of individuals regarding the
respective security concerns.

Wiley et al. [19] explored the relationship between information security
awareness, organizational culture, and security culture. However, the literature
is still missing studies on how these kinds of relationships contribute to the engi-
neering of secure systems and particularly the requirements engineering stage.

Understanding the Role of Human-Related Factors 67

Several works focused on comparing the practices of security and non-security
experts [7,10]. Ion et al. [10] studied how security and non-security experts prac-
tices impacted the adoption of security solutions, including procedures and tech-
nologies. While security experts are most likely to install software updates and
use two-factor authentication and a password manager, non-security experts are
most likely to use anti-virus, access only known applications, and change pass-
words frequently. Other studies have explored the role of how human reasoning,
judgments, and decisions impacted the adoption of security solutions. [6,8].

Related facets beyond technological solutions such as HRF, including the psy-
chological and behavioural factors that affect the requirements process, should
be addressed at both development team member and organizational levels. Other
works have explored the interactions among systems developers and engineers
to understand how vulnerabilities are introduced in the systems at early stages
of development and how to mitigate them under interactions of developers. For
example, Astromskis et al. [4] identified patterns of developer behaviour during
the development of secure systems. Similarly, Wang et al. [18] examined the com-
munication patterns between developers in the context of security development.

Overall, these works highlight the importance of considering the team’s inter-
actions and how they behave during the system development process, and the
knowledge they require when performing the corresponding tasks. However, the
literature is still missing studies on how these kinds of relationships contribute
to the engineering of secure systems and particularly the RE stage.

3 Proposed Framework

We posit that HRFs should be integrated in early stages of system planning.
We envision an ecosystem of models to enhance our understanding about the
role of HRFs and their impact on security requirements elicitation. Figure 1
highlights the idea of our envisioned framework, its models, and their relation-
ships. The dashed arrow between the security concerns model and the security
requirements model indicates a relationship that we wish to exist, but may not
when poor security requirements are elicited. It is important to emphasize that
although in this paper we focused on the cognitive factors of the requirements
engineers only; personality and cognitive factors are also relevant to other actors
involved in the development process (e.g., security engineers and stakeholders).
We realize that this is an important aspect to be considered in the future.

Profile Characterization Model. This model characterizes the different
HRFs of the RE team members, where their combination, along with users’
goals and requirements constitute what are referred to as “user profiles” [2].
One way in which to build the Profile Characterization Model is to create a set
of RE Team Profiles by considering one or more of the aforementioned HRFs
assessed through questionnaires or observation studies. This will enable the clas-
sification of individual RE team members within specific RE team profiles. For
illustration, we consider the “Big Five” personality model [13] to characterize

68 S. Alwidian and J. Jaskolka

characterized by

elicits

Requirements Engineer

influences

Profile
Characterization

Model

addressed by

Security
Requirements

Model

influencesCognitive
Model

Security
Concerns

Model

validates

Security Engineer

expresses

Stakeholder

Profile
Analysis

Security
Concerns
Analysis

Security
Requirements

Analysis

Fig. 1. An overview the proposed framework

the RE team profiles. The Big Five model represents broad categories of person-
ality traits including: Openness, Conscientiousness, Agreeableness, Extraversion,
and Neuroticism. In this work, we are not focusing on validating the accuracy
or the correctness of profiles. A “profile” is just one example used to charac-
terize the HRFs, and it can be replaced by other more sophisticated modelling
mechanisms.

We acknowledge that teams dynamics, and the way team members, with
different personalities or profiles, interact with each other would have a major
impact on the overall quality of the elicited requirements. We plan to extend
the scope of this research in the near future to study the teams dynamics, and
their direct relationships to the elicited security requirements. We could consider
adopting studies similar to the ones that have been already proposed in the con-
text of software development, (e.g., [9]).

Cognitive Model. This model explains the attitudes, awareness, and intentions
for adopting a particular recommendation (protection against security threats
in our context). As Fig. 1 illustrates, the cognitive model is related to the Profile
Characterization Model in the sense that RE team’s cognitive aspects are influ-
enced by the team’s HRFs. For example, if we consider an Openness RE team
profile, then owners of this profile are expected to be open to try new things,
and to adapt new attitudes and behaviours towards achieving a particular goal.

One way to construct the cognitive model is by adopting the Protection
Motivation Theory (PMT) [16] to identify the levels of awareness of the team
members regarding security concerns (i.e., threats, vulnerabilities, attacks), and
to describe the teams’ intentions and motivations for developing secure systems
from early stages of the SDLC. The characterization of attitudes, motivations
and behaviours of teams is vital so that adequate security requirements and
protection goals can be determined for critical system assets. The PMT measures
the coping behaviour of individuals when they are informed of a threatening event
(e.g., unauthorized access to an online banking account) [15]. This behaviour
is directly influenced by the individual’s willingness to perform a recommended
action, referred to as the coping response (e.g., use strong passwords). The coping

Understanding the Role of Human-Related Factors 69

response is the net result of the individual’s evaluation of the threat appraisal
and coping appraisal.

In PMT, threat appraisal refers to an individual’s assessment of the level
of danger/risk posed by a threat. It consists of the perceived vulnerability and
perceived severity, indicating the individual’s assessment of the probability and
the severity of the consequences of the threatening event, respectively. Cop-
ing appraisal, on the other hand, refers to an individual’s ability to cope with
potential loss/damage resulting from a threat. It consists of self efficacy, refer-
ring to the individual’s confidence in their ability to perform the recommended
behaviour (e.g., confidence to choose a strong password), response efficacy, rep-
resenting the efficacy of the recommended behaviour (e.g., benefits of choosing
and using a strong password), and response cost, indicating the perceived costs
(monetary, time, effort, etc.) in adopting the recommended behaviour (e.g., cog-
nitive load that comes with remembering a strong password.).

Security Concerns Model. This model captures the application-specific secu-
rity concerns (e.g., threats, vulnerabilities, attacks) to the system and its assets.
Security concerns are expressed by the stakeholders and validated by a secu-
rity engineer. We assume that stakeholders express their genuine concerns with
respect to the system assets, regardless of their security knowledge and aware-
ness. In our context, the security concerns model can be represented as a list of
security concerns, perhaps with priorities indicating the perceived losses and/or
criticality of the concerns. The goal of the RE team is to address these concerns
by eliciting appropriate security requirements.

Security Requirements Model. This model is elicited by the RE team and
captures the set of requirements that prescribe protections against potential
threats, vulnerabilities, and attacks to the application-specific system assets.
The security requirements model may take the form of scenario-based models,
goal-oriented models, Scaled Agile Framework (SAFe) models, UMLsec models,
misuse cases, etc. We emphasize that the focus of this paper is not on the pro-
cesses by which security requirements are elicited, but rather on understanding
how HRFs shape the intentions and motivations of the individuals performing
these processes. Our next step will be to study the actual impact of these inten-
tions and motivations (which were captured here through profiles) on the elicited
requirements through measuring the quality and adequacy of these requirements.

4 Illustrative Example

To better understand the relationships between the proposed models (see Fig. 1),
we describe one usage scenario. Consider developing an Online Seller of Merchan-
dise (OSM) system similar to the one presented in [17]. The OSM system must
deal with several sensitive pieces of customer information including the cus-
tomer’s name, address, merchandise item selected, and credit card information.
The RE team must elicit security requirements to address the security concerns

70 S. Alwidian and J. Jaskolka

related to the customer information. Using this scenario, we describe how each
of the models in the proposed framework can be built.

Profile Characterization Model. Suppose that RE team profiles are charac-
terized based on the “Big Five” personality model. Suppose also that we have a
team composed of three requirements engineers (RE1, RE2, and RE3) to develop
the requirements for the OSM system. For illustration, assume that RE1 highly
exhibits the Openness trait, RE2 highly exhibits the Conscientiousness trait,
and RE3 highly exhibits the Agreeableness trait. According to [11], individuals
showing openness tend to be creative, have the desire to try new things, and
feel confident to tackle new challenges. On the other hand, individuals showing
conscientiousness tend to be careful, show self-discipline, and pay attention to
tiny details. Lastly, individuals showing agreeableness are usually considerate,
cooperative, and tend to comply with instructions and recommendations. To this
end, we model the profiles of the RE team. It is important to note that the big
five personality traits are orthogonal dimensions. In our example, we consider
RE1 to belong to the Openness profile assuming that this is their most dominant
trait. They could still show other personality traits, but just at lower levels. The
same reasoning is applied to the other RE team members.

Cognitive Model. The cognitive model is unbounded to any application
domain and it is applicable to any type of systems. For our illustrative example,
we adopt the PMT constructs listed below.

C1. Perceived Severity : How serious are the consequences if the security concern
is realized in the system?

C2. Perceived Vulnerability : How likely is the security concern to be realized in
the system?

C3. Self Efficacy : How confident is the RE team in their ability to address the
security concerns?

C4. Response Efficacy : To what extent does the RE team know effective security
controls to address the security concern?

C5. Response Cost: To what extent does the RE team consider the costs/side-
effects associated with solutions to address the security concern?

We consider these cognitive factors in an attempt to predict behaviours of
the RE team members, and to differentiate between members who are aware of
the importance of eliciting high-quality security requirements from those who do
not make such efforts. The outcomes of this analysis can then be potentially used
to devise measures that ameliorate quality of the elicited security requirements.

Security Concerns & Security Requirements Models. Assume the project
stakeholders expressed the security concerns below related to the customer infor-
mation assets. The security engineer is responsible for validating these concerns.

Understanding the Role of Human-Related Factors 71

Table 1. Mapping security requirements to RE team profiles, cognitive constructs, and
security concerns

Security Requirement RE Profile PMT Cognitive Construct
Security Concern

Elicited As Elicited By C1 C2 C3 C4 C5

R1 RE1 P1: Openness L L H L L T1

R2 RE2 P2: Conscientiousness H H L H H T2

R3 RE3 P3: Agreeableness H H N H H T3

R4 RE3 P3: Agreeableness H H N H H T4

T1. An attacker may intercept customer information in transit.
T2. An attacker may modify customer information in storage.
T3. An attacker may perform an SQL injection attack to delete customer infor-

mation from storage.
T4. A customer may use a weak password for their account.

For the OSM system, the RE team is responsible for eliciting security require-
ments to address the security concerns (T1–T4) expressed by the stakeholders.
For illustration, suppose the following security requirements are elicited by mem-
bers of the RE team (as noted) belonging to specific profiles described above.

R1. All data in transit shall be encrypted by proven algorithms. (elicited by RE1)
R2. The OSM system shall provide an access control mechanism with limited

write access to the customer information storage. (elicited by RE2)
R3. Input queries to the customer information storage shall be validated. (elicited

by RE3)
R4. A password policy for choosing and using strong passwords shall be enforced.

(elicited by RE3)

Profile Analysis. To assess the impact of HRFs and their relationships with
cognitive constructs, we map the RE team profile to cognitive constructs. For
example, RE1, characterized by the Openness profile, could underestimate the
perceived severity (C1) and perceived vulnerability (C2) of security concerns.
At the same time, this team members would correlate highly with self efficacy
(C3) because the openness personality traits make them confident about their
ability to address security concerns. However, they could be overly optimistic
where they may propose solutions that have not been fully thought-out, thus
having low correlation to response efficacy (C4) and response cost (C5).

Reasoning in a similar way, we can map the personality traits for the Consci-
entiousness and Agreeableness profiles for each cognitive construct. An example
result of our hypothetical profile analysis is shown in Table 1. In this example,
we used a 3-level rating scale representing low (L), neutral (N), and high (H)
correlation. The levels of the actual correlations can only be determined through
questionnaire-based studies, which is out of the scope of this paper.

72 S. Alwidian and J. Jaskolka

Security Concerns Analysis. To understand the extent to which team mem-
bers of cognitive levels and profiles are aware of security concerns, we map secu-
rity concerns with how they were elicited as requirements, and by which RE
team member. This gives us an understanding about translating the awareness
of security concerns into requirements elicited by a particular RE team member.

To express how security concerns are influenced by cognitive constructs, we
suggest a set of generic sample questions that could be asked for each security
concern and answered using the same 3-level rating scale discussed previously, as
shown in Table 1, where the correlation between cognitive constructs and security
concerns is inferred by evaluating the profile of the requirements engineer (RE)
who translated the security concern (T) into a security requirement (R).

For instance, security concern T1 was handled by RE1 and elicited as require-
ment R1. Recall that RE1 was profiled with the Openness profile (P1), which
makes them underestimate the consequences and the severity of T1. As a result,
RE1 will score low (L) for C1 and C2. In addition, RE1 with their open-minded,
optimistic personality, may not fully consider the potential costs to a solution or
care whether it is really effective, thus scoring low (L) for C4 and C5. Lastly, as
mentioned in earlier, RE1 will be confident about their ability to address secu-
rity concerns, hence, they will score high (H) for C3, as illustrated in Table 1. It
is worthwhile to mention here that it is not necessary for a particular require-
ments engineer with given profile to always correspond to a specific set of PMT
cognitive answers.

Security Requirements Analysis. As illustrated in Table 1, understand-
ing the relationships between an RE team’s HRFs and their cognitive levels
about protection/security awareness, and understanding how the cognitive levels
impact the RE team’s perceptions towards security concerns, gives us a frame-
work to reason about the relationship between security concerns (expressed by
the stakeholders) and security requirements elicited by the RE team. Specifi-
cally, the proposed analyses indicate how an RE team with a particular profile
will approach specific security concern and elicit/translate it into a requirement.

Getting back to RE1, who elicited the requirement R1 to address security
concern T1, we can see that R1 is an over-optimistic requirement, where the
algorithms are vaguely prescribed to be the “best available” without much con-
sideration to the costs and effectiveness in the solution. We argue that this
over-optimistic requirement was elicited by RE1 in this way due to the nature of
their HRFs (e.g., profile), which in turn impacted their perception towards the
security concern T1, and the way they address it as a requirement R1. If the same
concern T1 was elicited by RE2 or RE3, then we expect that the requirement
will be expressed differently, depending on the RE team member’s profile.

More detailed analyses investigating the correlations between models in our
proposed framework is still needed. We expect that such analyses will result
in an improved awareness about the role that HRFs play in the requirements
elicitation phase, specifically in the context of developing secure systems.

Understanding the Role of Human-Related Factors 73

5 Discussion and Concluding Remarks

The rating scale currently used for describing the relationships between the mod-
els may not be expressive enough to draw sufficient conclusions. Hence, we will
explore alternatives to better characterize the relationships between models of
our proposed framework. Further, we built the models using the “Big Five”
model and PMT, but further investigation into other approaches for character-
izing HRFs and cognitive constructs is needed. Similarly, other methodologies
to characterize RE team profiles (e.g., the HEXACO model [3]) can be used.

To better understand the impact cognitive constructs have on shaping team
attitudes and behaviours, we will consider studying the correlations between the
different cognitive constructs as done in other studies that adapted the PMT
for cybersecurity-related research (e.g., [20]). Last but not least, we currently
assume that the stakeholders are capable of expressing their security concerns
and that the security engineering is capable of validating these concerns. How-
ever, there are other HRFs that influence these activities as well. We need to
consider not only the RE team to elicit the security requirements, but also the
profiles of other stakeholders who articulate requirements and security engineers
who validate these requirements. Exploring ways in which HRFs of the stake-
holders impact the quality and validity of their security concerns is another area
of interest. In conclusion, this paper previewed our work towards understanding
the role of HRFs of RE teams and their impact on eliciting security requirements.
Specifically, we sketched a framework based on several models capturing HRFs,
cognitive constructs, security concerns and security requirements. Using an illus-
trative example, we showed how correlations between these models enable the
discovery of cognitive factors that represent the intentions and motivations for
developing secure systems from early stages of the SDLC. Continued elaboration
of the proposed framework is needed to better enhance our understanding of the
role that HRFs play in requirements engineering for security domains.

Acknowledgment. This research is supported by Natural Sciences and Engineering
Research Council of Canada (NSERC) grant RGPIN-2019-06306.

References

1. Alshaikh, M.: Developing cybersecurity culture to influence employee behavior: A
practice perspective. Comput. Secur. 98, 102003 (2020)

2. Alwidian, S.: Towards integrating human-centric characteristics into the goal-
oriented requirements language. In: 12th Model-Driven Requirements Engineering
Workshop (2022). (To Appear)

3. Ashton, M.C., Lee, K.: Empirical, theoretical, and practical advantages of the
HEXACO model of personality structure. Personal. Soc. Psychol. Rev. 11(2), 150–
166 (2007)

4. Astromskis, S., Bavota, G., Janes, A., Russo, B., Di Penta, M.: Patterns of devel-
opers behaviour: A 1000-hour industrial study. J. Syst. Softw. 132, 85–97 (2017)

74 S. Alwidian and J. Jaskolka

5. Bowen, B.M., Devarajan, R., Stolfo, S.: Measuring the human factor of cyber
security. In: 2011 IEEE International Conference on Technologies for Homeland
Security, pp. 230–235 (2011)

6. Brust-Renck, P.G., Weldon, R.B., Reyna, V.F.: Judgment and decision making.
Oxford Research Encyclopedia of Psychology (2021)

7. Compagna, L., Khoury, P.E., Massacci, F., Thomas, R., Zannone, N.: How to
capture, model, and verify the knowledge of legal, security, and privacy experts: A
pattern-based approach. In: 11th International Conference on Artificial Intelligence
and Law, pp. 149–153. ACM (2007)

8. Corbin, J.C., Reyna, V.F., Weldon, R.B., Brainerd, C.J.: How reasoning, judgment,
and decision making are colored by gist-based intuition: A fuzzy-trace theory app-
roach. J. Appl. Res. Memory Cognit. 4(4), 344–355 (2015)

9. Gren, L., Torkar, R., Feldt, R.: Group development and group maturity when
building agile teams: A qualitative and quantitative investigation at eight large
companies. J. Syst. Softw. 124, 104–119 (2017)

10. Ion, I., Reeder, R., Consolvo, S.: “...No one can hack my mind”: Comparing expert
and non-expert security practices. In: 11th USENIX Conference on Usable Privacy
and Security, pp. 327–346. USENIX Association (2015)

11. Jaccard, J.J.: Predicting social behavior from personality traits. J. Res. Personal.
7(4), 358–367 (1974)

12. Jaskolka, J.: Recommendations for effective security assurance of software-
dependent systems. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) SAI 2020. AISC,
vol. 1230, pp. 511–531. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
52243-8 37

13. John, O.P., Srivastava, S.: The big five trait taxonomy: History, measurement, and
theoretical perspectives, pp. 102–138. Guilford Press (1999)

14. Kruger, H., Kearney, W.: A prototype for assessing information security awareness.
Comput. Secur. 25(4), 289–296 (2006)

15. Rippetoe, P.A., Rogers, R.W.: Effects of components of protection-motivation the-
ory on adaptive and maladaptive coping with a health threat. J. Personal. Soc.
Psychol. 52(3), 596–604 (1987)

16. Rogers, R.W.: A protection motivation theory of fear appeals and attitude change.
J. Psychol. 91(1), 93 (1975)

17. Samuel, J., Jaskolka, J., Yee, G.: Analyzing structural security posture to evalu-
ate system design decisions. In: 21st IEEE International Conference on Software
Quality, Reliability, and Security, pp. 8–17 (2021)

18. Wang, S., Nagappan, N.: Characterizing and understanding software developer
networks in security development. In: 32nd International Symposium on Software
Reliability Engineering, pp. 534–545 (2021)

19. Wiley, A., McCormac, A., Calic, D.: More than the individual: Examining the
relationship between culture and information security awareness. Comput. Secur.
88, 101640 (2020)

20. Woon, I.M.Y., Tan, G.W., Low, R.: A protection motivation theory approach to
home wireless security. In: 2005 International Conference on Information Systems
(2005)

https://doi.org/10.1007/978-3-030-52243-8_37
https://doi.org/10.1007/978-3-030-52243-8_37

Scope Determined (D) and Scope
Determining (G) Requirements: A New

Categorization of Functional
Requirements

Daniel M. Berry1(B) , Márcia Lucena2 , Victoria Sakhnini1 ,
and Abhishek Dhakla1

1 Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

{dberry,vsakhnini,adhakla}@uwaterloo.ca
2 Department of Computer Science and Applied Mathematics, Universidade Federal

do Rio Grande do Norte, Natal, RN, Brazil
marciaj@dimap.ufrn.br

Abstract. Context: Some believe that Requirements Engineering (RE)
for a computer-based system (CBS) should be done up front, producing
a complete requirements specification before any of the CBS’s software
(SW) is written. Problem: A common complaint is that (1) new require-
ments never stop coming; so upfront RE goes on forever with an ever grow-
ing scope. However, data show that (2) the cost to modify written SW to
include a new requirement is at least 10 times the cost of writing the SW
with the requirement included from the start; so upfront RE saves devel-
opment costs, particularly if the new requirement is one that was needed to
prevent a failure of the implementation of a requirement already included
in the scope. The scope of a CBS is the set of requirements that drive its
implementation. Hypothesis: We believe that both (1) and (2) are cor-
rect, but each is about a different category of requirements, (1) scope deter-
mininG (G) or (2) scope determineD (D), respectively. Past Work: Re-
examination of the reported data of some past case studies through the
lens of these categories indicates that when a project failed, a large num-
ber of its defects were due to missing D requirements, and when a project
succeeded, the project focused its RE on finding all of its D requirements.
Conclusions: The overall aim of the future research is to empirically show
that focusing RE for a chosen scope, including for a sprint in an agile devel-
opment, on finding all and only the D requirements for the scope, while
deferring any G requirements to later releases or sprints, allows upfront
RE (1) that does not go on forever, and (2) that discovers all require-
mentswhose addition after implementationwould bewastefully expensive,
wasteful because these requirements are discoverable during RE if enough
time is devoted to looking for them.

Keywords: Agile methods · Defect repair cost · Empirical studies ·
Exceptions and variations · Requirements specification · Scope ·
Scope-determined requirement · Scope-determining requirement ·
Software development lifecycle · Sprint · Upfront requirements
engineering · Waterfall methods

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 75–84, 2023.
https://doi.org/10.1007/978-3-031-29786-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_6&domain=pdf
http://orcid.org/0000-0002-6817-9081
http://orcid.org/0000-0002-9394-6641
http://orcid.org/0000-0001-6350-3885
http://orcid.org/0000-0001-6316-8714
https://doi.org/10.1007/978-3-031-29786-1_6

76 D. M. Berry et al.

1 Introduction

The current great debate [2,8,12,15,18,20,23,24,29,30,34,35] in Requirements
Engineering (RE) is whether requirements for a computer-based system (CBS)

1. should be identified upfront before design and coding begin, as in the waterfall
lifecycle [31], or

2. should be identified incrementally, interleaved with design and coding of
requirements identified so far, as in the spiral or agile lifecycles [1,10].

Here, “identifying requirements for a CBS up front” means “identifying require-
ments for the CBS in their entirety”.

The argument for identifying requirements upfront is that catching and fixing
a requirement defect, i.e., a missing or incorrect requirement, during coding
costs 10 times the cost of catching and fixing it during upfront RE [9,32]. Thus,
developing a CBS using waterfall methods, with requirements determined for the
entire CBS up front before beginning any coding, leads to the shortest overall
development time [4,6,9,11,16,28,33].

The arguments for identifying requirements incrementally are that

– requirements never stop coming [1,6]; if design and coding do not start until
all requirements are identified, design and coding will never start, and

– many requirements change as more and more of a CBS is developed and as the
world changes as a result of the CBS’s being used [21,22]; some requirements
that were identified before will be thrown out; and the time spent identifying
these thrown-out requirements would be wasted!

Thus, we should develop CBSs using agile methods, with requirements deter-
mined for each sprint of coding only at the beginning of the sprint.

Attempts to settle the debate with empirical data have failed. Empirical stud-
ies go both ways and are overall inconclusive [2,12,20,24,29,34]. Consequently, the
choice of CBS development lifecycle, upfront RE or agile, to use in a CBS devel-
opment project is made on the basis of gut feelings informed by experience and
a recognition that if a project does something different from what is established
practice, and the project fails, the heads of the project’s decision makers will roll.

The reason that data have not decided the debate is that each side is right!

A1. Requirements do never stop coming; and many requirements do change,
resulting in wasted effort.

A2. There are a lot of requirements defects that can be found and fixed early
if one is spending enough time doing RE, and a complete requirements
specification (RS) for a CBS dramatically reduces the incidence of expen-
sive-to-fix requirement defects that appear in the code for the CBS.

We believe that the two competing arguments, A1 and A2, are talking about
two different kinds of requirements, respectively:

K1. One kind of requirement emerges only as stakeholders, especially users,
identify a previously unknown requirement, as a result of thinking about
or using the CBS, sometimes because the CBS has changed the real world
and thus, its own requirements [1,10,21,22].

Scope Determined (D) and Scope Determining (G) Requirements 77

K2. The other kind of requirement can be identified before design and coding if
enough time is devoted to RE, and it is wasteful to leave this kind of require-
ment to be found only later in the lifecycle when it is more expensive to fix
[6].

If our belief is correct, then a possible reason that the past empirical studies are
inconclusive is that none of them distinguishes these particular different kinds
of requirements. They are all lumped together as just requirements.

We have identified a new binary categorization of new requirements being
considered for addition to a CBS:

C1. The first category of requirement consists of the scope determininG (G)1

requirements, and
C2. the second category of requirement consists of the scope determineD (D)

requirements.

Here, the scope of a CBS is the set of requirements — a.k.a. use cases or features
— it implements. Maybe, the past empirical studies will be more conclusive for
each category of requirements studied separately.

This categorization has been identified in the past under different names. For
example, among use cases, a variation or exception of another use case is a D
requirement, but a new, independent use case is a G requirement. New are the
names of the categories, which are more suggestive of

– how the categorization of a requirement can be done and
– how knowledge of the categorizations of candidate requirements for a CBS

can be used during RE for the CBS and during its subsequent development.

Gause and Weinberg observe that just giving the right name to an old idea can
suddenly make the idea operational [13].

This article cites related work from the past, all done for other purposes,
which suggest that

– A1 = K1 = C1, and G requirements can be handled incrementally, and
– A2 = K2 = C2, and D requirements are best handled up front.

This article proposes some empirical studies to validate these claims.
In the rest of this article, Sect. 2 describes the categories of D and G require-

ments in depth. Section 3 defines the completion of a scope as the scope with all
its D requirements made explicit. Section 4 makes a few observations about D
and G requirements in the wild. Section 5 describes the past empirical work that
directly led to the research reported in this article and describes other related
past work. Section 6 predicts future work consistent with the long term goals of
this research. Section 7 states important implications of successful future work,
and Sect. 8 concludes the article.

1 A mnemonic: The first letters that completely distinguish the phrases “scope deter-
mining” and “scope determined” are the phrases’ last letters!

78 D. M. Berry et al.

2 G and D Requirements

Understanding the definitions of G and D requirements is helped by a simple
example2 of their use.

Suppose we have a simple calculator CBS, C, offering only the four oper-
ations: addition, subtraction, multiplication, and division. Then the set of require-
ments3,

R ={addition, subtraction, multiplication, division},
is a scope of C. Then, the requirement,

r1 =exponentiation,
is a G requirement with respect to (w.r.t.) R, because exponentiation is not needed
for the correct functioning of any of addition, subtraction, multiplication, and divi-

sion. Adding r1 to R makes a different calculator. That is, the addition of r1 is
determininG a new scope. However, the requirement,

r2 =checking that the division denominator is not zero,
is a D requirement w.r.t. R, because this checking is needed for correct func-
tioning of division. Adding r2 to R does not make a different calculator; r2 is
implicitly in C ’s scope because C ’s division will break any time the checking
fails; r2 is determineD by the current scope. That is, because r2 is already in
C ’s scope, r2 is not really added to R.

More precisely, suppose that C is a CBS. A scope of C is a set R ofC ’s require-
ments. Each requirement r can be classified into one of two categories w.r.t. R.

1. r is a scope determininG (G) requirement w.r.t. R if r is not needed for correct
functioning in C of any element of R

2. r is a scope determineD (D) requirement w.r.t. R if r is needed for correct
functioning in C of at least one element of R other than r.

When the scope R is understood, “w.r.t. R ” can be elided.
In the rest of this article, (1) “r is needed for correct functioning in C of

q”, (2) “q determines r w.r.t C ”, and (3) “r is determined w.r.t. C by q” are
synonyms. In these sentences, r is a D requirement w.r.t. R.

3 Completion of Scope

That adding to a scope one of its D requirements is not considered changing the
scope says that there is some notion of the completion of a scope, R, as R with
all its D requirements made explicit.

The completion w.r.t. C, CC(r), of a requirement r, is the set of all require-
ments R such that each r′ in R is determined w.r.t. C by r or by an element
of R.

2 The example does not expose all the nuances that emerge only when the definitions
are applied to real-life CBSs.

3 Use of mathematical notation, e.g., the variable “C ”, is not signaling any attempt
to be formal about inherently informal, real-world concepts [17]. Attempts to stick to
only natural language led to confusingly ambiguous sentences, e.g., with two different
scopes distinguished by multi-word adjective phrases that confused the authors!

Scope Determined (D) and Scope Determining (G) Requirements 79

The completion w.r.t. C, CC(R), of a set of requirements, R, is the union
of the completions w.r.t. C of all of R ’s elements.

In principle, the completion of any set of requirements should be the same, no
matter the order in which its elements are considered for completion; testing
that this is so is part of future work.

RE for a CBS, C, typically starts when C ’s customers supply to requirements
analysts (RAs) an initial set of features, F . A feature is a requirement, and thus,
F is a scope, which is taken, at least initially, as defining C.

The RAs flesh F into its completion, generally requirement by requirement.
Because completion adds to a scope only requirements determined by the scope,
this fleshing out is not seen as changing the scope of C. Therefore, F , F ’s
completion, and every scope generated during the fleshing out are considered as
describing the scope of C, S(C) = S. The goal of this fleshing out is to make
S explicit, that is to actually contain specifications of all the elements of the
completion of F , and to serve as a written specification of C.

There will be an iterative procedure for completion:
Initially S = F . Each iteration considers a candidate new requirement, r to add
to S, r being identified by any of a variety of elicitation means.
— If r is D w.r.t. S, then S ∪ {r} becomes S for the next iteration.
— If r is G w.r.t. S, then, unless it is explicitly decided to expand the scope with
r,

S is unchanged for the next iteration, and r is added to the backlog list.
The iteration is complete when S = CC(F).
More generally, RE for a scope, R, of a CBS is done when all of the D require-
ments of R have been found and included in R ’s RS, which specifies R ’s com-
pletion [6].

If in any iteration, it is decided to expand the scope of C with the new r, then
the iteration starts over with S ∪ {r} as the initial scope. Thus, this procedure
takes into account the need to select a scope that is a viable whole, that consists
of a set of features that forms a coherent whole, that makes C useful to its users.

To allow the iterative procedure to be used not only for upfront RE but also for
each sprint of an agile method, the procedure is allowed to start with any scope,
any set of requirements, not just F , which is intended to be for the whole of C.

4 Observations and Implications

The ability to categorize a requirement as either D or G allows focusing the
precious RE effort for any version of a CBS on finding for its scope all and only
those requirements, the scope’s D requirements, that are necessary to have a
complete RS for the version before its implementation begins. The procedure
is to chose a scope, i.e., a set of G requirements, for your CBS. Focus all RE
effort on finding all D requirements implied by the requirements in the chosen
scope, while ignoring all other G requirements, i.e., those that are orthogonal
to the requirements in the chosen scope. While this procedure sounds like the
upfront RE in a waterfall method, it can be the initial steps in an agile method

80 D. M. Berry et al.

sprint for the chosen scope. The test cases that serve as the means to verify the
correctness of the code for the sprint can be generated from the requirements
that emerge from the procedure, if it is not desired to produce an actual RS.

Once the distinction between D and G requirements is understood, it becomes
clear that the addition of a D requirement to the scope currently being imple-
mented is not scope creep, because the D requirement was already in the scope
even if it were not written in the scope’s RS. Only the addition of a G require-
ment is true scope creep.

Another way to understand a missing D requirement is that it is a case of
requirements and requirements documentation debt [3] that may not even reflect
a conscious decision to incur the debt.

Still another view arises from use-case-based methods, which distinguish two
kinds of use cases, (1) main use cases or basic use cases and (2) variation and
exception use cases. In retrospect, these kinds of use cases are nothing more than
(1) G use cases and (2) D use cases, respectively. When use cases are classified
in this way, it becomes clear that all of the D use cases of a G use case have to
be considered together and be implemented together with the G use case.

5 Antecedent and Related Work

Some of the relevant literature is cited in Sects. 1–4.
Some papers that author Berry coauthored and that his students wrote in

the past show data that are consistent with and even actively support the claims
made in this article. Each paper was written before the ideas reported in this
article crystalized; it is actually another piece of slowly accumulated evidence
leading to these ideas. Nevertheless, since the data were gathered with no notion
of D and G requirements, there is no chance that researcher bias towards support-
ing this article’s claims influenced the data gathering or the original conclusions
drawn from the data. In these studies, in each challenged or failed project, a
large number, if not a majority, of its defects were from missing D requirements
[6,7,14,16]. In the one highly successful project, its RE focused on finding all D
requirements of its scope [4,28].

The NaPiRE effort [26] has developed a survey instrument by which partici-
pants can identify what pains them about RE, whether they be artifacts, processes,
or whatever. The effort has spawned a number of studies of software development
organizations in various different places, including Austria, Brazil, and Germany.

The typical report about a survey [27]4 lists the top 5 or 10 pains. Among
the top pains that involve RSs are:

– implicit requirements not made explicit [36]: D
– incomplete and/or hidden requirements [36]: D #1
– inconsistent requirements [25]: D
– missing completeness check [19]: D

4 The data from which the list of pains is obtained are in the papers listed at the
cited website [27].

Scope Determined (D) and Scope Determining (G) Requirements 81

– moving targets (changing goals, business processes and or requirements) [25,
36]: G

– underspecified requirements that are too abstract and allow for various inter-
pretations
[25,36]: D #2

– volatile customer’s business domain [36]: G

The two of these that seem to be consistently listed in the top 2 of the pains
that involve requirements specifications are marked “#1” and “#2”, respec-
tively. The other top pains involve RE processes and communication among
stakeholders.

For more details on all of these earlier studies, please see Sects. 6 and 7 of a
technical report written by the authors of this article [5].

6 Future Work and Long Term Goals

The long-term goal of our future research is to answer the research question
(RQ):

RQ: What is the effect on
1. the development lifecycle of a CBS and
2. the quality of the developed CBS
of an RE that focuses on identifying and specifying upfront, all and only the
D requirements in the CBS’s scope?

A possible answer to the RQ is expressed as falsifiable, testable hypotheses that
will be the subject of future research.

As typically done, an agile development discovers all requirements the same
way: each sprint defines a scope that includes some new requirements, deferring
others to later sprint. As typically done, a waterfall development tries to discover
all requirements up front before its implementation starts.

The cost observations lead to the testable hypotheses:

H1: Regardless of development model,
1. the quality of a CBS, by any measure, is negatively correlated with and
2. the cost of developing the CBS is positively correlated with
the number of D requirements missing from the CBS’s scope.

H2: Let S be a scope that is missing some D requirements D′. Regardless of
development model, a development from S ∪ D′ produces a CBS
1. with better quality and
2. with lower cost
than does a development from S.

Some past empirical studies need to be redone taking into account G and D
requirements to see if they produce more conclusive results.

82 D. M. Berry et al.

7 Implications of Validation

Support for these hypotheses recommends modifying agile methods so that each
sprint, with a scope, S, begins with upfront RE that continues as long as nec-
essary to identify all D requirements for S. This modified agile method is agile
globally, but within each sprint, it is a waterfall for the scope of the sprint.
This modified agile method should produce better CBSs more quickly and with
lower cost than do unmodified agile methods. This claim, too, must be validated
empirically.

8 Conclusions

This article has identified a new categorization of functional requirements, D
and G requirements and has described past case studies showing that focusing a
project’s RE on finding all of its scope’s D requirements has led to higher than
expected project success. If future work shows this observation to be true in
general, then each sprint of an agile method should include full upfront RE for
its scope.

Acknowledgements. The authors thank Luiz Márcio Cysneiros, Sarah Gregory, Irit
Hadar, Andrea Herrmann, John Mylopoulos, Mike Panis, Davor Svetinovic, and Anna
Zamansky for their comments on previous drafts or in oral presentations of this work.

References

1. Agile Alliance. Principles: The Agile Alliance (2001). http://www.agilealliance.
org/

2. Balaji, S., Sundararajan Murugaiyan, M.: WATEERFALLVs [sic] V-MODEL Vs
AGILE: A COMPARATIVE STUDY ON SDLC. JITBM 2(1) (2012)

3. Barbosa, L., Freire, S., et al.: Organizing the TD management land-
scape for requirements and requirements documentation debt. In: Proceedings
of WER (2022). http://wer.inf.puc-rio.br/WERpapers/artigos/artigos WER22/
WER 2022 Camera ready paper 28.pdf

4. Berry, D., Daudjee, K., et al.: User’s manual as a requirements specification: Case
studies. REJ 9(1), 67–82 (2004)

5. Berry, D., Lucena, M., et al.: Scope determined (D) versus scope determining
(G) requirements: A new significant categorization of functional requirements.
Tech. rep., Univ. Waterloo (2023). https://cs.uwaterloo.ca/∼dberry/FTP SITE/
tech.reports/GvsDprelimTechReport.pdf

6. Berry, D.M., Czarnecki, K., et al.: Requirements determination is unstoppable: An
experience report. In: Proceedings of RE, pp. 311–316 (2010)

7. Berry, D.M., Czarnecki, K., et al.: The problem of the lack of benefit of a document
to its producer (PotLoBoaDtiP). In: Proceedings of SWSTE, pp. 37–42 (2016)

8. Berry, D.M., Damian, D., et al.: To do or not to do: If the requirements engineering
payoff is so good, why aren’t more companies doing it? In: Proceedings of RE, p.
447 (2005)

http://www.agilealliance.org/
http://www.agilealliance.org/
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER22/WER_2022_Camera_ready_paper_28.pdf
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER22/WER_2022_Camera_ready_paper_28.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/GvsDprelimTechReport.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/GvsDprelimTechReport.pdf

Scope Determined (D) and Scope Determining (G) Requirements 83

9. Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs
(1981)

10. Boehm, B.W.: A spiral model of software development and enhancement. SIG-
SOFT Softw. Eng. Notes 11(4), 14–24 (1986)

11. Ellis, K., Berry, D.M.: Quantifying the impact of requirements definition and man-
agement process maturity on project outcome in business application development.
REJ 18(3), 223–249 (2013)

12. Gaborov, M., Karuović, D., et al.: Comparative analysis of agile and traditional
methodologies in IT project management. jATES 11(4), 1–24 (2021)

13. Gause, D., Weinberg, G.: Exploring Requirements: Quality Before Design. Dorset
House, New York (1989)

14. Gellert, C.: Requirements engineering and management effects on downstream
developer performance in a small business findings from a case study in a
CMMI/CMM context. Master’s thesis, Univ. Waterloo, Canada (2021). http://
hdl.handle.net/10012/17777

15. Greenspan, S.J.: Extreme RE: What if there is no time for requirements engineer-
ing? In: Proceedings of RE, pp. 282–284 (2001)

16. Isaacs, D., Berry, D.M.: Developers want requirements, but their project manager
doesn’t; and a possibly transcendent Hawthorne effect. In: Proceedings of EmpiRE
(2011)

17. Jackson, M.A.: Problems and requirements. In: Proceedings of ISRE, pp. 2–8
(1995)

18. Jiang, L., Eberlein, A.: An analysis of the history of classical software development
and agile development. In: Proceedings of IEEE SMC, pp. 3733–3738 (2009)

19. Kalinowski, M., Curty, P., et al.: Supporting defect causal analysis in practice with
cross-company data on causes of requirements engineering problems. In: Proceed-
ings of ICSE SEIP, pp. 223–232 (2016)

20. Kasauli, R., Knauss, E., et al.: Requirements engineering challenges and practices
in large-scale agile system development. JSS 172, 110851 (2021)

21. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE
68(9), 1060–1076 (1980)

22. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.)
EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0017737

23. Lucia, A., Qusef, A.: Requirements engineering in Agile software development. J.
Emerg. Technol. Web Intell. 2(3), 212–220 (2003)

24. Malm, T.: Requirements engineering in agile projects - Comparing a sample to
requirements-engineering literature. Master’s thesis, Faculty of Social Sciences,
Business and Economics, Åbo Akademi Univ., Turku, Finland (2020). https://
www.doria.fi/bitstream/handle/10024/177487/malm tobias.pdf

25. Mendez, D., Tießler, M., et al.: On evidence-based risk management in require-
ments engineering. In: SWQD: Methods and Tools for Better Software and Sys-
tems, pp. 39–59 (2018)

26. Mendez, D., Wagner, S., et al.: Naming the pain in requirements engineering: Con-
temporary problems, causes, and effects in practice. EMSE 22, 2298–2338 (2017)

27. NaPiRE: Napire data and publications (Viewed 1 November 2022). http://napire.
org/#/data

28. Ou, L.: WD-pic, a new paradigm for picture drawing programs and its development
as a case study of the use of its user’s manual as its specification. Master’s thesis,
Univ. Waterloo (2002). https://cs.uwaterloo.ca/∼dberry/FTP SITE/tech.reports/
LihuaOuThesis.pdf

http://hdl.handle.net/10012/17777
http://hdl.handle.net/10012/17777
https://doi.org/10.1007/BFb0017737
https://doi.org/10.1007/BFb0017737
https://www.doria.fi/bitstream/handle/10024/177487/malm_tobias.pdf
https://www.doria.fi/bitstream/handle/10024/177487/malm_tobias.pdf
http://napire.org/#/data
http://napire.org/#/data
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/LihuaOuThesis.pdf
https://cs.uwaterloo.ca/~dberry/FTP_SITE/tech.reports/LihuaOuThesis.pdf

84 D. M. Berry et al.

29. Rasheed, A., Zafar, B., et al.: Requirement engineering challenges in agile software
development. Math. Prob. Eng. 2021 (2021)

30. Rogers, G.: How agile can requirements engineers really be? RE Magazine (2014).
https://re-magazine.ireb.org/articles/requirements-engineers

31. Royce, W.W.: Managing the development of large software systems: Concepts and
techniques. In: WesCon (1970)

32. Schach, S.R.: Classical and object-oriented software engineering with UML and
Java, 4th edn. McGraw-Hill, New York (1998)

33. So, J., Berry, D.M.: Experiences of requirements engineering for two consecutive
versions of a product at VLSC. In: Proceedings of RE, pp. 216–221 (2006)

34. Thesing, T., Feldmann, C., Burchardt, M.: Agile versus waterfall project manage-
ment: Decision model for selecting the appropriate approach to a project. Procedia
Comput. Sci. 181(01), 746–756 (2021)

35. Van Cauwenberghe, P.: Chapter 18: Refactoring or up-front design? (2002). http://
wwww.agilecoach.net/html/refactoring or upfront.pdf

36. Wagner, S., Mendez, D., et al.: Requirements engineering practice and problems
in Agile projects: Results from an international survey. In: Proceedings of CibSE,
pp. 85–98 (2017)

https://re-magazine.ireb.org/articles/requirements-engineers
http://wwww.agilecoach.net/html/refactoring_or_upfront.pdf
http://wwww.agilecoach.net/html/refactoring_or_upfront.pdf

NLP and Machine Learning for AI

Using Language Models for Enhancing
the Completeness of Natural-Language

Requirements

Dipeeka Luitel(B), Shabnam Hassani(B), and Mehrdad Sabetzadeh(B)

University of Ottawa, Ottawa, ON K1N 6N5, Canada
{Dipeeka.Luitel,S.Hassani,M.Sabetzadeh}@uottawa.ca

Abstract. [Context and motivation] Incompleteness in natural-
language requirements is a challenging problem. [Question/problem] A
common technique for detecting incompleteness in requirements is check-
ing the requirements against external sources. With the emergence of lan-
guage models such as BERT, an interesting question is whether language
models are useful external sources for finding potential incompleteness
in requirements. [Principal ideas/results] We mask words in require-
ments and have BERT’s masked language model (MLM) generate con-
textualized predictions for filling the masked slots. We simulate incom-
pleteness by withholding content from requirements and measure BERT’s
ability to predict terminology that is present in the withheld content but
absent in the content disclosed to BERT. [Contribution] BERT can be
configured to generate multiple predictions per mask. Our first contribu-
tion is to determine how many predictions per mask is an optimal trade-
off between effectively discovering omissions in requirements and the level
of noise in the predictions. Our second contribution is devising a machine
learning-based filter that post-processes predictions made by BERT to fur-
ther reduce noise. We empirically evaluate our solution over 40 require-
ments specifications drawn from the PURE dataset [1]. Our results indi-
cate that: (1) predictionsmade byBERTare highly effective at pinpointing
terminology that is missing from requirements, and (2) our filter can sub-
stantially reduce noise from the predictions, thus making BERT a more
compelling aid for improving completeness in requirements.

Keywords: BERT · Natural Language Processing · Machine Learning

1 Introduction

Improving the completeness of requirements is an important yet challenging prob-
lem in requirements engineering (RE) [2]. The RE literature distinguishes two
notions of completeness [3]: (1) Internal completeness is concerned with require-
ments being closed with respect to the functions and qualities that one can infer
exclusively from the requirements. (2) External completeness is concerned with
ensuring that requirements are encompassing of all the information that exter-
nal sources of knowledge suggest the requirements should cover. These external

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 87–104, 2023.
https://doi.org/10.1007/978-3-031-29786-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_7

88 D. Luitel et al.

sources can be either people (stakeholders) or artifacts, e.g., higher-level require-
ments and existing system descriptions [4]. External completeness is a relative
measure, since the external sources may be incomplete themselves or not all the
relevant external sources may be known [3]. Although external completeness can-
not be defined in absolute terms, relevant external sources, when available, can be
useful for detecting missing requirements-related information.

When requirements and external sources of knowledge are textual, one can
leverage natural language processing (NLP) for computer-assisted checking of
external completeness. For example, Ferrari et al. [5] use NLP to check complete-
ness against stakeholder-interview transcripts. And, Dalpiaz et al. [6] use NLP
alongside visualization to identify differences among stakeholders’ viewpoints;
these differences are then investigated as potential incompleteness issues.

With (pre-trained) language models, a new opportunity arises for NLP-based
improvement of external completeness in requirements: Using self-supervised
learning, language models have been trained on very large corpora of textual
data, e.g., millions of Wikipedia articles. This raises the prospect that a language
model can serve as an external source of knowledge for completeness checking.
In this paper, we explore a specific instantiation of this idea using BERT [7].

BERT has been trained to predict masked tokens by finding words or phrases
that most closely match the surrounding context. To illustrate how BERT can
help with completeness checking of requirements, consider the example in Fig. 1.
In this example, we have masked one word, denoted [MASK], in each of require-
ments R1, R2 and R3. We have then had BERT make five predictions for filling
each masked slot. For instance, in R1, the masked word is availability. The pre-
dictions made by BERT are: performance, efficiency, stability, accuracy, and
reliability. As seen from the figure, one of these predictions, namely stability, is
a word that appears in R6. Similarly, the predictions that BERT makes for the
masked words in R2 and R3 (audit and connectivity) reveal new terminology
that is present in R4 and R5 (network, traffic, comply and security).

In the above example, if requirements R4–R6 were to be missing,
BERT’s predictions over R1–R3 would provide useful cues about some
of the missing terminology.

Contributions. We need a strategy to study how well BERT predicts relevant
terminology that is absent from requirements. To this end, we simulate missing
information by randomly withholding a portion of a given requirements speci-
fication. We disclose the remainder of the specification to BERT for obtaining
masked-word predictions. In our example of Fig. 1, the disclosed part would be
requirements R1–R3 and the withheld part would be requirements R4–R6. BERT
can be configured to generate multiple predictions per mask. Our first contri-
bution is to determine how many predictions per mask is an optimal trade-off
between effectively discovering simulated omissions and the amount of unuseful
predictions (noise) that BERT generates.

We observe that a large amount of noise would result if predictions by BERT
are to achieve good coverage of requirements omissions. Some of the noise is
trivial to filter. For instance, in the example of Fig. 1, one can dismiss the pre-
dictions of service and system (made over R3); these words already appear in

Using Language Models for Enhancing the Completeness of Requirements 89

Fig. 1. Illustrative requirements specification split into a disclosed and a withheld part.
The withheld part simulates requirements omissions. Masking words in the disclosed
part and having BERT make predictions for the masks reveals some terms that appear
only in the withheld part.

the disclosed portion, thereby providing no cues about missing terminology. Fur-
thermore, one can dismiss words that carry little meaning, e.g., “any”, “other”
and “each”, should such words appear among the predictions. After applying
these obvious filters, one would still be left with considerable noise. Our second
contribution is a machine learning-based filter that post-processes predictions
by BERT to strike a better balance between noise and useful predictions.

Our solution development and evaluation is based on 40 requirements spec-
ifications from the PURE dataset [1]. These specifications contain over 23,000
sentences combined. To facilitate replication and further research, we make our
implementation and evaluation artifacts publicly available [8].

2 Background

Below, we review the background for our work, covering the NLP pipeline, lan-
guage models, word embeddings, machine learning and corpus extraction.

NLP Pipeline. Natural language processing (NLP) is usually performed using
a pipeline of modules [9]. In this paper, we apply an NLP pipeline composed of
tokenizer, sentence splitter, part-of-speech (POS) tagger and lemmatizer mod-
ules. The tokenizer demarcates the tokens of the text. The sentence splitter
divides the text into sentences. The POS tagger assigns a POS tag to each token
in each sentence. The lemmatizer maps each word in the text to its lemma form.
For example, the lemma for both “running” and “ran” is “run”. We use the
annotations produced by the NLP pipeline for several purposes, including the
identification and lemmatization of terms in requirements documents as well as
processing predictions made by BERT in their surrounding context.
Language Models. Recent NLP approaches heavily rely on deep learning, and
in particular, transfer learning [7]. Bidirectional Encoder Representations from

90 D. Luitel et al.

Transformers (BERT) is a pre-trained language model using two unsupervised
tasks: Masked Language Model (MLM) and Next Sentence Prediction (NSP).
BERT Base and BERT Large are two types of the BERT model. BERT Large,
while generally more accurate, requires more computational resources. To mit-
igate computation costs, we employ BERT Base. BERT Base has 12 encoder
layers with a hidden size of 768 and ≈110 million trainable parameters. BERT
models take capitalization of words into consideration and can be either cased
or uncased. For BERT uncased, the text has been lower-cased before tokeniza-
tion, whereas in BERT cased, the tokenized text is the same as the input text.
Previous RE research suggests that the cased model is preferred for analyzing
requirements [10,11]. We thus use the cased model in this paper.

Word Embeddings. In our work, we need a semantic notion of similarity that
goes beyond lexical equivalence and allows us to further identify closely related
terms; examples would be (i) “key” and “unlock”, and (ii) “encryption” and
“security”. For this, we use cosine similarity over word embeddings. Word embed-
dings are mathematical representations of words as dense numerical vectors cap-
turing syntactic and semantic regularities [12]. We employ GloVe’s pre-trained
model [13]. This choice is motivated by striking a trade-off between accuracy
and efficiency. BERT also generates word embeddings; however, these embed-
dings are expensive to compute and do not scale well when a large number of
pairwise term comparisons is required.

Machine Learning (ML). We use supervised learning, more specifically clas-
sification, to identify the relevant predictions made by BERT. Our features for
learning and our process for creating labelled data are discussed in Sects. 3 and 4,
respectively. Classification models have a tendency to predict the more prevalent
class(es) [14]. In our context, non-relevant terms outnumber relevant ones. We
under-sample the majority class (i.e., non-relevant) to counter imbalance in our
training set and thereby reduce the risk of filtering useful information [15]. To fur-
ther reduce this risk, we additionally employ cost-sensitive learning (CSL) [14].
CSL enables us to assign a higher penalty to relevant terms being filtered than
non-relevant terms being classified as relevant.

Domain-Corpus Extraction. Domain-specific corpora are useful resources
for improving the accuracy of automation in RE [16]. When such corpora
do not exist a priori, they can be constructed using domain documents from
sources such as Wikipedia, books and magazines [16–19]. In our work, we
require statistical information from a domain-specific corpus to better deter-
mine relevance of terms predicted by BERT. For this purpose, we employ the
WikiDoMiner corpus extractor [19]. WikiDoMiner is a fully automated tool that
gathers domain knowledge for an input requirements specification by crawl-
ing Wikipedia. The tool extracts keywords from the input specification and
assembles a set of Wikipedia articles relevant to the terminology and thus the
domain of the specification.

Using Language Models for Enhancing the Completeness of Requirements 91

Fig. 2. Approach Overview.

3 Approach

Figure 2 provides an overview of our approach. The input to the approach is a
(textual) requirement specification (RS). The approach has six steps. The first
step is to parse the RS. The second step is to generate predictions for masked
words using BERT. The third step is to remove the predictions that provide little
or no additional information. The fourth step is to construct a domain-specific
corpus for the given RS. Using this corpus and the results from Step 1, the fifth
step is to build a feature matrix for ML-based filtering of non-relevant terms from
predictions by BERT. The sixth and last step is to feed the computed feature
matrix to a (pre-trained) classifier in an attempt to remove noise (non-relevant
words) from the predictions. The output of the approach is a list of recommended
terms that are likely relevant to the RS but are currently absent from it.

Step 1) Parsing RS using NLP. The RS is fed to an NLP pipeline. The
pipeline first annotates the sentences in the RS using a sentence splitter. A
sentence annotation does not necessarily demarcate a grammatical sentence but
rather what the sentence splitter finds to be a sentence. Next, each word in each
sentence is annotated with a POS tag and the lemma form of the word.

Step 2) Obtaining Predictions from BERT. Our approach loops through
each sentence of the annotated RS obtained from Step 1. It masks, one at a time,
each word that has a POS tag of “noun” or “verb”. The resulting sentence with
a single masked word is fed to BERT in order to obtain a configurable number
of predictions for the masked word. We focus on nouns and verbs because noun
phrases and verb phrases are the main meaning-bearing elements of sentences [4].
In our illustration of Fig. 1, we had BERT generate five predictions per masked
word. As we argue empirically in our evaluation of Sect. 4, for our purposes, our
recommendation is 15 predictions per masked word. For each prediction, BERT
provides a probability score indicating its confidence in the prediction. We retain
the probability scores for use in Step 5 of the approach.

Step 3) Removing Obviously Unuseful Predictions. We discard predic-
tions that offer little or no additional information. Specifically, we remove predic-
tions whose lemma is already present in the RS; such predictions provide no new
hints about potentially missing terminology. We further remove predictions that
either (1) are among the top 250 most common words in English, or (2) belong
to the union of Berry et al.’s [20] and Arora et al.’s [21] [22] sets of vague words

92 D. Luitel et al.

and stopwords in requirements. The output of this step is a list of predictions
cleared of obviously unuseful terms.

Step 4) Generating Domain-specific Corpus. Using WikiDoMiner [19]
(introduced in Sect. 2), we automatically extract from Wikipedia a domain-
specific corpus for the input RS. WikiDoMiner has a depth parameter that con-
trols the expansion of the corpus. When this parameter is set to zero, we obtain a
corpus of articles containing a direct match to the key phrases in the RS. Increas-
ing the depth generates larger corpora, with each level further expanding the sub-
categories of Wikipedia articles included. In our work, we restrict our search to
direct article matches (i.e., depth = 0). This enables quick corpus generation and
further scopes terminology expansion to what is most immediately pertinent to
the RS at hand. In our exploratory investigation, we observed that larger depth
values significantly increase corpus size, diluting its domain-specificity and in
turn reducing the effectiveness of filtering in Step 6 of the approach.

Step 5) Building Feature Matrix for Filtering. For each prediction from
Step 3, we compute a feature vector as input for a ML-based classifier that
decides whether the prediction is “relevant” or “non-relevant” to the input RS.
Our features are listed and explained in Table 1. The main principle behind our
feature design has been to keep the features generic and in a normalized form.
Being generic is important because we do not want the features to rely on any
particular domain or terminology. Having the features in a normalized form is
important for allowing labelled data from multiple documents to be combined for
training, and for the resulting ML models to be applicable to unseen documents.
The output of this step is a feature matrix where each row represents a prediction
(from Step 3) and each column represents a feature as defined in Table 1.

Step 6) Filtering Noise from Predictions The predictions from Step 3 are
noisy (i.e., have many false positives). To reduce the noise, we subject the pre-
dictions to a pre-trained ML-based filter. The most accurate ML algorithm for
this purpose is selected empirically (see RQ2 in Sect. 4). The selected algorithm
is trained on the development and training portion of our dataset (P1 in Table 2,
as we discuss in Sect. 4). Due to our features in Table 1 being generic and normal-
ized, the resulting ML model can be used as-is over unseen documents without
re-training (see RQ3 in Sect. 4 for evaluation of effectiveness). The output of this
step is the list of BERT predictions that are classified as “relevant” by our filter;
duplicates are excluded from the final results.

4 Evaluation

In this section, we empirically evaluate our approach. During the process, we
also build the pre-trained ML model required by Step 6 of the approach (Fig 2).

Using Language Models for Enhancing the Completeness of Requirements 93

Table 1. Features for Learning Relevance and Non-relevance of Predictions by BERT.

ID Type (T), Definition (D) and Intuition (I)

MF1 (T) Nominal (D) POS tag of the masked word (noun or verb). (I) This feature is
helpful if nouns and verbs happen to influence relevance in different ways

F2 (T) Nominal (D) POS tag of the prediction; this is obtained by replacing the masked
word with the predicted word and running the NLP pipeline on the resulting sentence.
(I) The intuition is similar to F1, except that predictions are not necessarily nouns or
verbs and can, e.g., be adjectives or adverbs

F3 (T) Nominal (Boolean) (D) True if F1 and F2 match; otherwise, False. (I) A mismatch
between F1 and F2 could be an indication that the prediction is non-relevant

F4 (T) Numeric (D) Length (in characters) of the masked word. (I) Words that are too
short may give little information. As such, predictions resulting from masking short
words could be non-relevant

F5 (T) Numeric (D) Length (in characters) of the prediction. (I) Predictions that are too
short could be non-relevant

F6 (T) Numeric (D) min (F4, F5)/max (F4, F5). (I) A small ratio (i.e., a large difference
in length between the prediction and the masked word) could indicate non-relevance

F7 (T) Numeric (D) The confidence score that BERT provides alongside the prediction.
(I) A prediction with a high confidence score could have an increased likelihood of being
relevant

F8 (T) Numeric (D) Levenshtein distance between the prediction and the masked word.
(I) A small Levenshtein distance between the prediction and the masked word could
indicate relevance

F9 (T) Numeric (D) Semantic similarity computed as cosine similarity over word
embeddings. (I) A prediction that is close in meaning to the masked word could have a
higher likelihood of being relevant

F10∗ (T) Ordinal (D) A value between zero and nine, indicating how frequently the
prediction (in lemmatized form) appears across all BERT-generated predictions over a
given RS. (I) A smaller value could indicate a higher likelihood of relevance

F11∗ † (T) Ordinal (D) A value between zero and nine, indicating how frequently the
prediction (in lemmatized form) appears in the domain-specific corpus. (I) A smaller
value could indicate a higher likelihood of relevance

F12† ‡ (T) Numeric (D) Average TF-IDF rank of the prediction across all articles in the
domain-specific corpus. (I) A higher rank could indicate a higher likelihood of relevance

F13† ‡ (T) Numeric (D) Maximum TF-IDF rank of the prediction across all articles in the
domain-specific corpus. (I) Same intuition as that for F12

∗Zero is most frequent (top ten percentile) and nine is least frequent (bottom ten
percentile). †Feature uses domain-specific corpus. ‡TF-IDF values are normalized
by Euclidean norm.

4.1 Research Questions (RQs)

Our evaluation answers the following RQs using part of the PURE dataset [1]. In
lieu of expert input about incompleteness for the documents in this dataset, we
apply the withholding strategy discussed in Sect. 1 to simulate incompleteness.

RQ1. How accurately can BERT predict relevant but missing termi-
nology for an input RS? The number of predictions that BERT generates per
mask is a configurable parameter. RQ1 examines what value for this parameter
offers the best trade-off for producing useful recommendations.

94 D. Luitel et al.

RQ2. Which ML classification algorithm most accurately filters
unuseful predictions made by BERT? Useful recommendations from BERT
come alongside a considerable amount of noise. In RQ2, we examine different
ML algorithms to filter noise. We further study the impact of data balancing
and cost-sensitive learning to prevent over-filtering.

RQ3. How accurate are the recommendations generated by our app-
roach over unseen documents? In RQ3, we combine the best BERT config-
uration from RQ1 with the filter models built in RQ2, and measure the accuracy
of this combination over unseen data.

4.2 Implementation and Availability

We have implemented our approach in Python. The NLP pipeline is imple-
mented using SpaCy 3.2.2. For extracting word embeddings, we use GloVe [13].
To obtain masked language model predictions from BERT, we use the Trans-
formers 4.16.2 library by Hugging Face (https://huggingface.co/) and operated
in PyTorch 1.10.2+cu113. Our ML-based filters are implemented in WEKA 3-
8-5 [23]. To implement the ML features listed in Table 1, we use standard imple-
mentations of cosine similarity (over word embeddings) and Levenshtein dis-
tance [24]. The TFIDF-based features in this table (F12-13) use TfidfVectorizer
from scikit-learn 1.0.2. Our implementation and evaluation artifacts are publicly
available [8].

4.3 Dataset

Our evaluation is based on 40 documents from the PURE dataset [1] – a col-
lection of public-domain requirements specifications. Many of the documents
in PURE require manual cleanup (e.g., removal of table of contents, headers,
section markers, etc.) We found 40 to be a good compromise between the effort
that we needed to spend on cleanup and having a dataset large enough for statis-
tical significance testing, mitigating the effects of random variation, and training
ML-based filters. The selected documents, listed in Table 2, cover 15 domains.
We partition the documents into two (disjoint) subsets P1 and P2. P1 is used for
approach development and tuning, i.e., for answering RQ1 and RQ2. P2, i.e., the
documents unseen during development and tuning, is used for answering RQ3.
Our procedure for assigning documents to P1 or P2 was as follows: We first ran-
domly selected one document per domain and put it into P2; this is to maximize
domain representation in RQ3. From the rest, we randomly selected 20 docu-
ments for inclusion in P1, while attempting to have P1 represent half of the data
in terms of token count. Any remaining document after this process was assigned
to P2, thus giving us 20 documents in P2 as well. Table 2 provides domain infor-
mation and summary statistics for documents in P1 and P2 after cleanup.

https://huggingface.co/

Using Language Models for Enhancing the Completeness of Requirements 95

Table 2. Our Dataset (Subset of PURE [1]). P1 is for development and training and
P2 for testing.

A B C D E F G H I J K L M N # of
sentences

of
 tokens

Dev &
Training

 -
gamma,

jse

tachonet,
nasa
x38,

nenios,
libra

evla
back,

gemini
pnnl

elsfork,
ctc network

beyond - -

 space
fractions,

multi-
mahjong

 -

clarus
low,
grid
bgc

 - - 12137 192761

Testing

sprat,
cctns,

dii

e-
procurement

inventory
esa,

telescope
themas,
elsfork

agentmom,
tcs

evla
corr

micro
care

npac qheadache colorcast
clarus
high

ijis rlcs 10958 192403

Domain Statistics

A : Security, B : Finance, C : Administration, D : Astronomy, E : Energy, F : Communications, G : Hardware Design, H : Medicine,
I : Databases, J : Games, K : Art, L : Weather, M : Legal, N : Transport, O : UX/Visualization.

O
watcom

gui,
sce api,

hats,
watcom

grid 3D

P1

P2

4.4 Analysis Procedure

EXPI. This experiment answers RQ1. For every document p ∈ P1, we randomly
partition the set of sentences in p into two subsets of (almost) equal sizes. In
line with our arguments in Sect. 1, we disclose one of these subsets to BERT and
withhold the other. We apply Steps 1, 2 and 3 of our approach (Fig. 2) to the
disclosed half, as if this half were the entire input document. We run Step 2 of our
approach with four different numbers of predictions per mask: 5, 10, 15, and 20.
For every document p ∈ P1, we compute two metrics, Accuracy and Coverage,
defined in Sect. 4.5. As the number of predictions per mask increases from 5
to 20, the predictions made by BERT reveal more terms that are relevant to
the withheld half. Nevertheless, as we will see in Sect. 4.6, the benefits diminish
beyond 15 predictions per mask.

To ensure that the trends we see as we increase the number of predictions
per mask are not due to random variation, we pick different shuffles of each
document p across different numbers of predictions per mask. For example, the
disclosed and withheld portions for a given document p when experimenting with
5 predictions per mask are different random subsets than when experimenting
with 10 predictions per mask.

EXPII. This experiment answers RQ2 and further constructs the training set
for the ML classifier in Step 6 of our approach (Fig. 2). We recall the disclosed
and withheld halves as defined in EXPI. For every document p ∈ P1, we label
predictions as “relevant” or “non-relevant” using the following procedure: Any
prediction matching some term in the withheld half is labelled “relevant”. The
criterion for deciding whether two terms match is a cosine similarity of ≥ 85%
over GloVe word embeddings (introduced in Sect. 2). All other predictions are
labelled “non-relevant”. The conservative threshold of 85% ensures that only
terms with the same lemma or with very high semantic similarity are matched.
For each prediction, a set of features is calculated as detailed in Step 5 of our
approach. It is paramount to note that Step 4, which is a prerequisite to Step 5,
exclusively uses the content of the disclosed half without any knowledge of the
withheld half. The above process produces labelled data for each p ∈ P1. We
aggregate all the labelled data into a single training set. This is possible because
our features (listed in Table 1) are generic and normalized.

96 D. Luitel et al.

Equipped with a training set, we compare five widely used ML algorithms:
Feed Forward Neural Network (NN), Decision Tree (DT), Logistic Regression
(LR), Random Forest (RF) and Support Vector Machine (SVM). All algorithms
are tuned with optimal hyperparameters that maximize classification accuracy
over the training set. For tuning, we apply multisearch hyperparameter optimiza-
tion using random search [25]. The basis for tuning and comparing algorithms is
ten-fold cross validation. We experiment with under-sampling the “non-relevant”
class with and without cost-sensitive learning (CSL); the motivation is reducing
false negatives (i.e., relevant terms incorrectly classified as “non-relevant”). For
CSL, we assign double the cost (penalty) to false negatives compared to false
positives (i.e., noise). We further assess the importance of our features using
information gain (IG) [14]. In our context, IG measures how efficient a given
feature is in discriminating “non-relevant” from “relevant” predictions. A higher
IG value implies a higher discriminative power.

EXPIII. This experiment answers RQ3 by applying our end-to-end approach
to unseen requirements documents, i.e., P2. To conduct EXPIII, we need a pre-
trained classifier for Step 6 of our approach (Fig. 2). This classifier needs to
be completely independent of P2. We build this classifier using the training set
derived from P1, as discussed in EXPII. EXPIII follows the same strategy as in
EXPI, which is to randomly withhold half of each document p (now in P2 rather
than in P1) and attempting to predict the novel terms of the withheld half. In
contrast to EXPI, in EXPIII, predictions made by BERT are post-processed by a
filter aimed at reducing noise. We repeat EXPIII five times for each p ∈ P2. This
mitigates random variation resulting from the random selection of the disclosed
and withheld halves, thus yielding more realistic ranges for performance. In
EXPIII, we study three levels of filtering. Noting that there are 20 documents
in P2, the results reported for EXPIII use 20 ∗ 5 ∗ 3 = 300 runs of our approach.

4.5 Metrics

We define separate metrics for measuring (1) the quality of term predictions
and (2) the performance of filtering. The first set of metrics is used in RQ1
and RQ3 and the second set is used in RQ2 and RQ3. To define our metrics,
we need to introduce some notation. Let Lem : bag → bag be a function that
takes a bag of words and returns another bag of words by lemmatizing every
element in the input bag. Let U : bag → set be a function that removes dupli-
cates from a bag and returns a set. Let C denote the set of common words and
stopwords as explained under Step 3 in Sect. 3. Given a document p treated as
a bag of words, the terminological content of p’s disclosed half, denoted h1, is
given by set X = U(Lem(h1)). In a similar vein, the terminological content of
p’s withheld half, denoted h2, is given by set Y = U(Lem(h2)). What we would
like to achieve through BERT is to predict as much of the novel terminology
in the withheld half as possible. This novel terminology can be defined as set
N = (Y − X) − C. Let bag V be the output of Step 3 (Fig. 2) when the approach
is applied exclusively to the disclosed half of a given document (i.e., h1). Note

Using Language Models for Enhancing the Completeness of Requirements 97

that V is already free of any terminology that appears in the disclosed half, as
well as of all common words and stopwords.

Quality of Term Predictions. Let set D denote the (duplicate-free) lemma-
tized predictions that have the potential to hint at novel terminology in the with-
held half of a given document. Formally, let D = U(Lem(V)). We define two met-
rics, Accuracy and Coverage to measure the quality of D. Accuracy is the ratio of
terms in D matching some term in N , to the total number of terms in D. That is,
Accuracy = |{t ∈ D | t matches some t′ ∈ N}|/|D|. A term t matches another
term t′ if the word embeddings have a cosine similarity of ≥ 85% (already discussed
under EXPII in Sect. 4.4). The second metric, Coverage, is defined as the ratio of
terms in N matching some term in D, to the total number of terms in N . That is,
Coverage = |{t ∈ N | t matches some t′ ∈ D}|/|N |. The intuition for Accuracy
and Coverage is the same as that for the standard Precision and Recall metrics,
respectively. Nevertheless, since our matching is inexact and based on a similarity
threshold, it is possible for more than one term in D to match an individual term
in N . Coverage, as we define it, excludes multiple matches, providing a measure of
how much of the novel terminology in the withheld half is hinted at by BERT.

Quality of Filtering. As explained earlier, our filter is a binary classifier to
distinguish relevance and non-relevance for the outputs from BERT. To mea-
sure filtering performance, we use the standard metrics of Classification Accu-
racy, Precision and Recall. True positive (TP), false positive (FP), true negative
(TN) and false negative (FN) are defined as follows: A TP is a classification of
“relevant” for a term that has a match in set N (defined earlier). A FP is a
classification of “relevant” for a term that does not have a match in N . A TN is
a classification of “non-relevant” for a term that does not have a match in N . A
FN is a classification of “non-relevant” for a term that does have a match in N .
Classification Accuracy is calculated as (TP + TN)/(TP + TN + FP + FN).
Precision is calculated as TP/(TP + FP) and Recall as TP/(TP + FN).

4.6 Results

RQ1. Figure 3 provides box plots for Accuracy and Coverage with the number
of predictions by BERT ranging from 5 to 20 in increments of 5. Each box
plot is based on 20 datapoints; each datapoint represents one document in P1.
We perform statistical significance tests on the obtained metrics using the non-
parametric pairwise Wilcoxon’s rank sum test [26] and Vargha-Delaney’s effect
size [27]. Table 3 shows the results of the statistical tests. Each column in the
table compares Accuracy and Coverage across two levels of predictions per mask.
For example, the 5 vs. 10 column compares the metrics for when BERT generates
5 predictions per mask versus when it generates 10.

For Accuracy, Fig. 3 shows a downward trend as the number of predictions
per mask increases. Based on Table 3, the decline in Accuracy is statistically
significant with each increase in the number of predictions, the exception being
the increase from 15 to 20, where the decline is not statistically significant.

98 D. Luitel et al.

For Coverage, Fig. 3 shows an upward but saturating trend. Five predic-
tions per mask is too few: all other levels are significantly better. Twenty is too
many, notably because of the lack of a significant difference for Coverage in the
10 vs. 20 column of Table 3. The choice is thus between 10 and 15. We select 15
as this yields an average increase of 3.2% in Coverage compared to 10 predictions
per mask. This increase is not statistically significant. Nevertheless, the price to
pay is an average decrease of (14.12 − 11.97 =) 2.15% in Accuracy. Given the
importance of Coverage, we deem 15 to be a better compromise than 10.

Fig. 3. (a) Accuracy and (b) Coverage for Different Numbers of Predictions per Mask.
Each box plot represents 20 datapoints (one datapoint per p ∈ P1) as computed by
EXPI in Sect. 4.4.

Table 3. Statistical Significance Testing for the Results of Fig. 3.

p-value 12 p-value 12 p-value 12 p-value 12 p-value 12 p-value 12

Accuracy 0.0051 0.245 (L) 5E-06 0.1075 (L) 2E-08 0.045 (L) 0.0143 0.725 (M) 0.0002 0.8275 (L) 0.242 0.61 (S)
Coverage 0.0015 0.795(L) 5E-05 0.855(L) 2E-05 0.87(L) 0.2184 0.385(S) 0.2084 0.3825(S) 0.883 0.485 (N)

15 vs. 20

Effect size: Large (L), Medium (M), Small (S), Negligible (N)

5 vs. 10 5 vs. 15 5 vs. 20 10 vs. 15 10 vs. 20

The answer to RQ1 is: When requirements omissions are simulated by with-
holding, having BERT make 15 predictions per mask is the best trade-off for
detecting missing terminology. BERT predicts terms that, on average, hint at
≈4 out of 10 omissions (Coverage ≈38%). On average, ≈1 in 8 predictions is
relevant (Accuracy ≈12%).

RQ2. Table 4 shows the results for ML-algorithm selection using the full (P1)
training set (61,996 datapoints), the under-sampled training set (36,842 data-
points), and the under-sampled training set alongside CSL. Classification Accu-
racy, Precision and Recall are calculated using ten-fold cross validation. In the
table, we highlight the best result for each metric in bold. When one uses the
full training set (option 1) or the under-sampled training set without CSL
(option 2), Random Forest (RF) turns out to be the best alternative. When
the under-sampled training set is combined with CSL (option 3), RF still has
the best Accuracy and Precision. However, Support Vector Machine (SVM)

Using Language Models for Enhancing the Completeness of Requirements 99

presents a moderate advantage in terms of Recall. Since option 3 is meant at fur-
ther improving the filter’s Recall, we pick SVM as the best alternative for this
particular option. Figure 4 lists the features of Table 1 in descending order of

Fig. 4. Feature Importance (Avg).

information gain (IG), averaged
across options 1, 2 and 3. We observe
that our corpus-based features (F11–
F13) are among the most influential,
thus justifying the use of a domain-
specific corpus extractor in our app-
roach.

Compared to option 1, options 2
and 3 get progressively more lax by
filtering less. We answer RQ3 using
RF for options 1 and 2 and SVM
for option 3. For better intuition, we
refer to option 1 as strict, option 2 as moderate and option 3 as lenient.

The answer to RQ2 is: RF and SVM yield the most accurate fil-
ter for unuseful predictions. RF is a better alternative for more aggres-
sive filtering, whereas SVM is a better alternative for more lax filtering
(thus better preserving Recall).

% % % % %

Fig. 5. Accuracy and Coverage over Test Set
(P2) without Filtering.

RQ3. Without filters and over our
test set (P2 in Table 2), the 15 pre-
dictions per mask made by BERT
have an average Accuracy of 12.11%
and average Coverage of 40.04%. Box
plots are provided in Fig. 5. We recall
from Sect. 4.4 (EXPIII) that five dif-
ferent random shuffles are performed
for each p ∈ P2. The plots in Fig. 5
are based on 5 ∗ 20 = 100 runs.

Table 4. ML Algorithm Selection (RQ2). All algorithms have tuned hyperparameters.

Figure 6 shows the performance of our three filters, namely strict, moderate,
and lenient, over P2. We observe that for all three filters, Precision levels over
unseen data are lower than the cross-validation results in RQ2 (Table 4). This
discrepancy was particularly expected for the moderate and lenient filters, noting
that, for these two filters, Table 4 reports performance over an under-sampled

100 D. Luitel et al.

(a) Strict Filter (b) Moderate Filter (c) Lenient Filter

% %

Fig. 6. Filtering Classification Accuracy, Precision and Recall over Test Set (P2).

% % % % % % % % % % % % % %

(a) Strict Filter (b) Moderate Filter (c) Lenient Filter

Fig. 7. Accuracy and Coverage over Test Set with (a) Strict, (b) Moderate, and
(c) Lenient Filter.

dataset. As for Recall, the results of Fig. 6 indicate that the filters behave con-
sistently with trends seen in cross-validation. This consistency provides evidence
that the filters did not overfit to the training data and are thus sufficiently
generalizable.

Figure 7 shows the word-prediction Accuracy and Coverage results after fil-
tering. Which filtering option the user selects depends on how the user wishes to
balance the overhead of reviewing non-relevant recommendations against poten-
tially finding a larger number of relevant terms missing from requirements.

The lenient filter increases Accuracy by an average ≈13% while decreasing
Coverage by ≈5%. The strict filter increases Accuracy by an average ≈36% while
decreasing Coverage by ≈20%. All filters impact both Accuracy and Coverage
in a statistically significantly manner with medium to large effect sizes.

The answer to RQ3 is: Depending on how aggressively one chooses to fil-
ter noise from BERT’s masked-word predictions, the average Accuracy of our
approach ranges between ≈49% and ≈25%. With a strict filter, approximately
one in two recommendations made by our approach is relevant, whereas with
a lenient filter, approximately one in four is. With a lenient filter, the rec-
ommendations hint at ≈35% of the (simulated) missing terminology. With a
strict filter, this number decreases to ≈20%.

4.7 Limitations and Validity Considerations

Limitations. We did not have access to domain experts for identifying gen-
uine cases of incompleteness. Our evaluation therefore simulates incompleteness
by withholding content from existing requirements. Future user studies remain

Using Language Models for Enhancing the Completeness of Requirements 101

necessary for developing a qualitative interpretation of our results and drawing
more definitive conclusions about the usefulness of our approach.

Validity Considerations. The validity considerations most pertinent to our
evaluation are internal, construct and conclusion validity. With regard to inter-
nal validity, we note that the disclosed and withheld portions were chosen ran-
domly. To mitigate random variation, we used a sizable dataset (40 documents)
and further employed repeated experimentation (RQ3). With regard to construct
validity, we note that our metrics for term predictions discard any terms already
seen in the disclosed portion as well as any duplicates, common words and stop-
words. This helps ensure that our metrics provide a legitimate assessment of
the quality of the predictions made by BERT. That being said, our current
quality assessment is not based on human judgement, and instead hinges on an
automatically calculated similarity measure. A human-based validation of the
predictions by BERT is therefore essential for better gauging the practical value
of our approach. With regard to conclusion validity, we note that, we chose a 50-
50 split between the disclosed and withheld portions. Assuming that the useful
predictions by BERT are evenly distributed across the withheld portion, similar
benefits should be seen with different split ratios, as long as the withheld portion
is not excessively small. We anticipate that there will be a limit to how small the
withheld portion can be, before it becomes too difficult to make relevant predic-
tions. This limit determines the sensitivity of our approach to incompleteness.
Further research is required to establish this limit.

5 Related Work

Ferrari et al. [5] propose an NLP-based approach for automatically extracting
relevant terms and relations from descriptions such as client-meeting transcripts.
Based on the extracted results, they make recommendations for improving the
completeness of requirements. Dalpiaz et al. [6] develop a technique based on
NLP and visualization to explore commonalities and differences between mul-
tiple viewpoints and thereby help stakeholders pinpoint occurrences of ambi-
guity and incompleteness. In the above works, the sources of knowledge used
for completeness checking (descriptions or alternative viewpoints) are existing
development artifacts. Our work uses a generative language model, BERT, for
completeness checking. In contrast to the above works, our approach does not
assume the existence of any user-provided artifacts against which to compare
the completeness of requirements.

Arora et al. [4] use domain models for detecting incompleteness in require-
ments. The authors simulate requirements omissions and demonstrate that
domain models can signal the presence of these omissions. Again, there is an
assumption about the existence of an additional development artifact – in this
case, a domain model. This limits the applicability of the approach to when a
sufficiently detailed domain model exists.

Bhatia et al. [28] address incompleteness in privacy policies by representing
data actions as semantic frames. They identify the expected semantic roles for

102 D. Luitel et al.

a given frame, and consequently determine incompleteness by identifying miss-
ing role values. Cejas et al. [29] use NLP and ML for completeness checking of
privacy policies. Their approach identifies instances of pre-defined concepts such
as “controller” and “legal basis” in a given policy. It then verifies through rules
whether all applicable concepts are covered. The above works deal with privacy
policies only and have a predefined conceptual model for textual content. Our
BERT-based approach is not restricted to a particular application domain and
does not have a fixed conceptualization of the textual content under analysis.
Instead, we utilize BERT’s pre-training and attention mechanism to make con-
textualized recommendations for improving completeness.

Shen and Breaux [30] propose an NLP-based approach for extracting domain
knowledge from user-authored scenarios and word embeddings. While this app-
roach is not concerned with checking the completeness of requirements, it uses
BERT’s MLM for generating alternatives by masking words in requirements
statements. Our approach uses BERT’s MLM in a similar manner. In contrast
to this earlier work, we take steps to address the challenge arising from such
use of BERT over requirements, namely the large number of non-relevant alter-
natives (false positives) generated. We propose a ML-based filter that uses a
combination of NLP and statistics extracted from a domain-specific corpus to
reduce the incidence of false positives.

6 Conclusion

Our results indicate that masked-word predictions by BERT, when comple-
mented with a mechanism to filter noise, have potential for detecting incom-
pleteness in requirements. In future work, we plan to conduct user studies to
more conclusively assess this potential. Other directions for future work include
experimentation with BERT variants and improving accuracy via fine-tuning.

Acknowledgements. This work was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC) under the Discovery and Discovery Accelerator
programs. We are grateful to Shiva Nejati, Sallam Abualhaija and Jia Li for helpful
discussions. We thank the anonymous reviewers of REFSQ 2023 for their constructive
comments.

References

1. Ferrari, A., Spagnolo, G.O., Gnesi, S.: PURE: a dataset of public requirements
documents. In: RE (2017)

2. Zowghi, D., Gervasi, V.: The three Cs of requirements: consistency, completeness,
and correctness. In: REFSQ (2003)

3. Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and
correctness in requirements evolution. IST 45(14), 993–1009 (2003)

4. Arora, C., Sabetzadeh, M., Briand, L.C.: An empirical study on the potential
usefulness of domain models for completeness checking of requirements. Empir.
Softw. Eng. 24(4), 2509–2539 (2019). https://doi.org/10.1007/s10664-019-09693-
x

https://doi.org/10.1007/s10664-019-09693-x
https://doi.org/10.1007/s10664-019-09693-x

Using Language Models for Enhancing the Completeness of Requirements 103

5. Ferrari, A., dell’Orletta, F., Spagnolo, G.O., Gnesi, S.: Measuring and improving
the completeness of natural language requirements. In: Salinesi, C., van de Weerd,
I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 23–38. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05843-6 3

6. Dalpiaz, F., van der Schalk, I., Lucassen, G.: Pinpointing ambiguity and incom-
pleteness in requirements engineering via information visualization and NLP. In:
Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS, vol. 10753, pp.
119–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-1 8

7. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: NAACL-HLT (2019)

8. Luitel, D., Hassani, S., Sabetzadeh, M.: Replication package (2023). https://doi.
org/10.6084/m9.figshare.22041341

9. Jurafsky, D., Martin, J.: Speech and Language Processing, 2nd edn. Prentice Hall,
Upper Saddle River (2009)

10. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: NoRBERT: transfer learning for
requirements classification. In: RE (2020)

11. Ezzini, S., Abualhaija, S., Arora, C., Sabetzadeh, M.: Automated handling of
anaphoric ambiguity in requirements: a multi-solution study. In: ICSE (2022)

12. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word
representations. In: NAACL-HLT (2013)

13. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: EMNLP (2014)

14. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques, 4th edn. Morgan Kaufmann, Boston (2017)

15. Berry, D.M., Cleland-Huang, J., Ferrari, A., Maalej, W., Mylopoulos, J., Zowghi,
D.: Panel: context-dependent evaluation of tools for NL RE tasks: recall vs. preci-
sion, and beyond. In: RE (2017)

16. Ezzini, S., Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.: Using domain-
specific corpora for improved handling of ambiguity in requirements. In: ICSE
(2021)

17. Cui, G., Lu, Q., Li, W., Chen, Y.R.: Corpus exploitation from Wikipedia for ontol-
ogy construction. In: LREC (2008)

18. Ferrari, A., Donati, B., Gnesi, S.: Detecting domain-specific ambiguities: an NLP
approach based on Wikipedia crawling and word embeddings. In: AIRE (2017)

19. Ezzini, S., Abualhaija, S., Sabetzadeh, M.: WikiDoMiner: wikipedia domain-
specific miner. In: ESEC/FSE (2022)

20. Daniel, M., Berry, E.K., Krieger, M.: From contract drafting to software specifica-
tion: linguistic sources of ambiguity, a handbook (2003)

21. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of con-
formance to requirements templates using natural language processing. IEEE TSE
41(10), 944–968 (2015)

22. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated extraction and
clustering of requirements glossary terms. IEEE TSE 43(10), 918–945 (2017)

23. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: The WEKA Workbench: Online
Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”,
4th edn. Morgan Kaufmann Publishers Inc., Boston (2016)

24. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. In:
Syngress (2008)

25. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. JMLR
13(2), 1–25 (2012)

https://doi.org/10.1007/978-3-319-05843-6_3
https://doi.org/10.1007/978-3-319-05843-6_3
https://doi.org/10.1007/978-3-319-77243-1_8
https://doi.org/10.6084/m9.figshare.22041341
https://doi.org/10.6084/m9.figshare.22041341

104 D. Luitel et al.

26. Capon, J.A.: Elementary Statistics for the Social Sciences: Study Guide. In:
Wadsworth (1991)

27. Vargha, A., Delaney, H.: A critique and improvement of the CL common language
effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2), 101–132
(2000)

28. Bhatia, J., Breaux, T.: Semantic incompleteness in privacy policy goals. In: RE
(2018)

29. Cejas, O.A., Abualhaija, S., Torre, D., Sabetzadeh, M., Briand, L.: AI-enabled
automation for completeness checking of privacy policies. IEEE TSE 48(11), 4647–
4674 (2022)

30. Shen, Y., Breaux, T.: Domain model extraction from user-authored scenarios and
word embeddings. In: AIRE (2022)

Requirement or Not, That is
the Question: A Case from the Railway

Industry

Sarmad Bashir1,2, Muhammad Abbas1,2(B), Mehrdad Saadatmand1,
Eduard Paul Enoiu2, Markus Bohlin2, and Pernilla Lindberg3

1 RISE Research Institutes of Sweden, Väster̊as, Sweden
{sarmad.bashir,mehrdad.saadatmand}@ri.se

2 Mälardalen University, Väster̊as, Sweden
muhammad.abbas@ri.se, {eduard.paul.enoiu,markus.bohlin}@mdu.se

3 Alstom, Väster̊as, Sweden
pernilla.lindberg@alstomgroup.com

Abstract. [Context and Motivation] Requirements in tender doc-
uments are often mixed with other supporting information. Identifying
requirements in large tender documents could aid the bidding process and
help estimate the risk associated with the project. [Question/problem]
Manual identification of requirements in large documents is a resource-
intensive activity that is prone to human error and limits scalability. This
study compares various state-of-the-art approaches for requirements iden-
tification in an industrial context. For generalizability, we also present an
evaluation on a real-world public dataset. [Principal ideas/results] We
formulate the requirement identification problem as a binary text classi-
fication problem. Various state-of-the-art classifiers based on traditional
machine learning, deep learning, and few-shot learning are evaluated for
requirements identification based on accuracy, precision, recall, and F1
score. Results from the evaluation show that the transformer-based BERT
classifier performs the best, with an average F1 score of 0.82 and 0.87
on industrial and public datasets, respectively. Our results also confirm
that few-shot classifiers can achieve comparable results with an average
F1 score of 0.76 on significantly lower samples, i.e., only 20% of the data.
[Contribution] There is little empirical evidence on the use of large lan-
guage models and few-shots classifiers for requirements identification. This
paper fills this gap by presenting an industrial empirical evaluation of the
state-of-the-art approaches for requirements identification in large tender
documents. We also provide a running tool and a replication package for
further experimentation to support future research in this area.

Keywords: Requirements identification · Requirements classification ·
tender documents · NLP

1 Introduction

Like many other industries, the project acquisition in the railway industry also
starts with a call for tender. A tender document is a formal request calling for com-
peting offers from different potential suppliers or contractors. A tender document
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 105–121, 2023.
https://doi.org/10.1007/978-3-031-29786-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_8

106 S. Bashir et al.

2. Train Requirements

ABC are seeking to procure trains that, as a minimum, provide a high quality and safe
 passenger environment consistent with modern passenger rolling stock in the ABC
and ABC and which is fully PRM-TSI compliant.

The Train Technical Specification (TTS) is provided below and bidders are requested
to provide a Train Proposal for the fleet which describes the FLUs it proposes to
supply and demonstrates how the requirements of TTS will be addressed.

2.1 AC Current Limit

2.1.1 The maximum power draw of a Unit in any Train formation shall be compatible
with the Network Rail infrastructure.

2.2.2 It shall be possible for the maintainer to easily change the defined current
limits via software parameters.

2.2 Noise and Vibration

2.2.1 Noise generated by railway operations can be a source of annoyance to
neighbours of the railway and the minimisation and control of noise is important. In
addition to the general requirement for compliance with the TTS, consideration needs
to be given to the requirements in respect of exterior noise and noise measurement
guidance in – Noise-TSI.

2.2.2 The interior of the Unit shall be free from rattles, whistles, banging doors as a
result of pressure pulses from passing trains or lineside structures, or other annoying
sound disturbances to passengers.

Requirement Information Confidential

Fig. 1. Motivating example of requirements mixed with supporting text

typically consists of chunks of English text in the form of high-level technical spec-
ifications, supporting information, and contractual obligations. The very compet-
itive market of railway vehicle manufacturing necessitates a quick response to such
a call for tender. This requires estimating the risk associated with the call and the
time required to deliver the end product. Extracting high-level technical specifi-
cations (requirements) from the tender document becomes crucial to estimate the
risk and time required for a call. The high-level requirements are used to derive
low-level requirements to be agreed upon. Furthermore, the requirements in the
tender document are compared with already delivered products to estimate risk
based on the novelty of the requirements. Therefore, identifying technical specifica-
tions from tender documents becomes a pre-requisite to enable project acquisition
and later Requirement Engineering (RE) tasks. Moreover, errors and inaccuracies
in this phase can have cascading effects on the rest of the development process.

Figure 1 shows a motivating example from a real tender document show-
ing requirements mixed with technical specifications. Manually identifying the
requirements in large tender documents could be time-consuming and prone to
human error. Requirement identification in a large document can be automated
by formulating it as a binary text classification problem. According to Berry [7],
the automated solutions for RE tasks should ideally have a 100% recall rate;

Requirement or Not, That is the Question 107

however, this is not often achieved in Machine learning (ML)-based solutions.
Despite this, utilizing automated solutions could still accelerate the process since
human input would only be required to sanitize the final output. The ultimate
goal must be to optimize the performance of these automated classification solu-
tions to alleviate the workload in practical settings. In RE, requirement classifica-
tion is one of the most prominent activities, as reported in literature [39]. Related
work on distinguishing requirements from other information often experimented
with traditional ML-based approaches for classification [4,13,35]. Furthermore,
the work of Abualhaija et al. [3,4] considers single sentences as a unit of classifica-
tion. However, requirements and information could range over multiple sentences
in our case. Nevertheless, the same approaches could be modified to take multi-
sentence input. However, the performance of large transformer-based language
models and few-shot classifiers in the task is still unclear. On the other hand,
work on distinguishing functional and non-functional requirements [5,15,20,29]
is a different use case, and studies in the domain often use public datasets with
some exceptions.

This study is conducted in close collaboration with Alstom, Sweden (Alstom),
a world-leading railway vehicle manufacturing company. The main objective of
this study is to find a practical solution to the requirements identification prob-
lem at Alstom. Therefore, this study reports an empirical evaluation of 20+
different classification pipelines for distinguishing requirements from supporting
text in large documents. The selected seminal pipelines include approaches from
traditional ML, deep learning, and transformer-based classifiers. In addition,
we leverage new approaches based on few-shot learning to address the common
challenge of data scarcity in the RE domain. Furthermore, to support further
research on the topic, we evaluated the same pipelines on a public dataset and
provided a replication package with a running tool1. This paper may also refer
to requirements identification as distinguishing requirements or classification.

The rest of the paper is structured as follows. Section 2 provides a brief
overview of the related work and background. Section 3 presents the study design
and the selected classification pipelines for requirements identification. Section 4
presents and discusses the results. Section 5 presents potential validity threats
and limitations. Finally, Sect. 6 concludes the paper with future directions.

2 Related Work and Background

Related Work. This paper focuses on identifying requirements through auto-
mated classification. Binkhonain and Zhao [8] performed a systematic literature
review on one aspect of the RE process, i.e., automated requirements classifi-
cation, specifically providing solutions to distinguish between functional (FRs)
and non-functional requirements (NFRs). Often FRs are related to the core
functionality, and NFRs describe the properties and constraints of the system.
The distinction between FRs and NFRs impacts the handling of requirements

1 Replication package and Tool: https://github.com/a66as/REFSQ2023-ReqORNot.

https://github.com/a66as/REFSQ2023-ReqORNot

108 S. Bashir et al.

elicitation, documentation, and validation process [12]. Therefore, the task of
automatic extraction and classification of requirements has been the focus of RE
researchers. Within this group of studies, Jindal et al. [20] employs an automated
approach to extract and classify security requirements. They use term-frequency
inverse document frequency (tfidf) weight vectors to analyze the security require-
ments with the goal of further classifying into sub-categories of security based
on the Decision Tree (DT) algorithm. Moreover, Varenov et al. [32] proposes
a sentence-level classifier based on fine-tuned DistilBERT [29] to allocate secu-
rity requirements into predefined groups. Recently, Alhoshan et al. [5] leverages
a Zero-Shot Learning (ZSL) technique on a subset of the PROMISE dataset
to classify NFRs into two categories, i.e., Usability and Security. Furthermore,
Herwanto et al. [15] propose an automated approach to identify privacy require-
ments in user stories based on the Named Entity Recognition (NER) model,
trained on Bi-directional Long Short Term Memory Networks (BI-LSTM) with
conditional random field [18].

The other more related thread of work is distinguishing requirements from
other information. Similar to our use case, Winkler et al. [35] propose a deep
learning (DL) classifier based on Convolution Neural Networks (CNNs) to iden-
tify requirements from additional material stored in IBM DOORS. Falkner et
al. [13] propose a Naive Bayes (NB) classifier—trained on unique words—to
identify requirements from Request of Proposal (RFP) documents within the
railway safety domain. Furthermore, Abualhaija et al. [4] proposes an auto-
mated ML-based approach to demarcate requirements in textual specifications
by considering one sentence as a unit of classification. They empirically evaluate
ML classifiers on the industrial dataset consisting of 12 documents. In addition,
Sainani et al. [28] defines a two-step methodology to first extract requirements
from 20 Software Engineering (SE) contracts and then allocate them to their spe-
cific types. For identification and extraction of requirements, Bi-LSTM yields the
best results compared to ML algorithms. To allocate identified requirements in
sub-classes, BERT (Bi-directional Encoder Representations from Transformers)
performed better in terms of F-1 score.

While our work shares the same general objective as the above-mentioned
approaches, we address the need for extensive empirical evaluation in automated
requirements identification and classification on industrial and public datasets.
Furthermore, we evaluated a new approach, namely a few-shot classifier, to iden-
tify requirements based on a limited dataset, a well-known problem in the RE
domain.

Background. Most of the ML or DL algorithms for classification do not work
with raw text but instead require transformed data as feature vectors. The
feature vectors can be generated with information retrieval (IR)-based lexical
approaches or with semantic approaches. In our work, we utilize tfidf vectors—a
lexical approach—to represent and train data on classical supervised ML algo-
rithms. We further apply the dimensionality reduction technique, i.e., principal
component analysis (PCA), on tfidf vectors to increase interpretability through
the creation of newly uncorrelated features with maximum variance.

Requirement or Not, That is the Question 109

Traditionally, Language Models (LMs) capture regularities, morphological
and distributional properties of a language. For DL algorithms, we consider state-
of-the-art semantic strategies based on LMs and neural networks. The semantic-
based LMs are coupled with a statistical classifier to perform classification. We
use FastText (FT) [9] and GloVe (GLV) [24] semantic representations to train
LSTM neural network for the identification of requirements in large documents.
Furthermore, we fine-tuned multiple token-based BERT LM variations based on
transformer architecture [33]. Originally, token-based BERT LM comes in two
variants for language representation, BERT base and large, pre-trained on 16 GB
data from Toronto BookCorpus and English Wikipedia dataset. With the advent
of transfer learning, token-based BERT LMs have been widely used for different
downstream tasks—in our case, classification to distinguish requirements.

Additionally, we perform few-shot fine-tuning on different variations of Sen-
tence Transformers [25] (ST)—a modified version of the pre-trained BERT LM
based on the siamese network. Specifically, we fine-tuned Sentence-BERT [25]
(S-BERT) and MiniLM-L12-v2 [34] (Mini-LM) on our datasets. Originally, ST
LMs are pre-trained for tasks like clustering and semantic search. However, we
can fine-tune ST LMs through Sentence Transformer Fine-Tuning [31] (SETFIT)
framework with a small number of examples for our requirements classification
task. Few-shot methods are an attractive solution and can address the long-
standing problem of data shortage in the RE domain.

3 Study Design

This work can be regarded as an exploratory case study oriented towards improv-
ing the project acquisition process at Alstom. Following the guidelines of Rune-
son and Höst [26], this section outlines the context, objectives, data collection,
and analysis procedure.

3.1 Case Context

Rail vehicle manufacturing is a globally competitive market. Like many other
industries, customers in the railway industry also publish a call for tender to
which companies respond. The tender document often contains contractual obli-
gations, supporting information, and technical specifications of the required
product. In response to the call for tender, in addition to understanding the con-
tractual obligations, companies must also identify potential requirements from
the documents to achieve the following objectives.

a) The extracted technical specifications must be reflected in deriving the cus-
tomer requirements to be agreed upon. This can aid the project acquisition
process.

b) The risk associated with the new project must be estimated to enable the
project resource and time management. This is done by comparing the
extracted technical specification to the already delivered projects, currently
based on experience.

110 S. Bashir et al.

Alstom is continuously looking for ways to improve the process of project acqui-
sition with tool support. As a first step, automated approaches for distinguishing
requirements from other supporting information are investigated in this study.
In this regard, for this paper, the case under study is the performance of various
classification pipelines in requirements identification. The units under analysis
are five tender documents from Alstom and the public dronology dataset [10].

3.2 Objective and Research Questions

Our main goal is to improve the project acquisition phase in the studied context.
As an initial step (this study), we first need to identify the requirements within
the tender documents. Requirements identification problem can be formulated
as a binary text classification problem. There have been a number of approaches
proposed for binary classification over the years. Therefore, this work is not
“reinventing the wheel” but instead aims to find an already existing practical—
in terms of execution time—solution for the problem in the studied context. As
discussed in the following sections, we consider seminal state-of-the-art classi-
fiers for this study. In addition, since the considered approaches for classifica-
tion might react differently to text pre-processing, we also study the impact of
pre-processing on classification performance. To this end, we pose the following
research questions (RQs):

– RQ1: What is the performance of different classification pipelines in require-
ments identification?

– RQ2: What is the impact of pre-processing on classification performance?
– RQ3: What is the execution time of each classification pipeline?

Table 1. Datasets

Dataset Reqs. Info. Sent. AW pAW TRD TSD

Industrial 1680 1293 8332 39 20 2378 595

Public 99 280 533 25 13 303 76

* AW = Avg. words, pAW = Avg. words when
pre-processed, TRD = Avg. training dataset rows,
TSD = Avg. test dataset rows

3.3 Data Collection

Industrial Case. We had access to five already annotated tender documents from
our industrial partner. The tender documents contain multi-sentence chunks of
text explaining the technical specifications, contractual obligations, and support-
ing information. The requirements among the documents were already tagged,
and the projects were already delivered to customers. Therefore, the ground truth
on whether a chunk of text is a requirement or not is already available in the
dataset. Note that the selected pipelines (see coming sections) for distinguish-
ing requirements require annotated input for training only. We selected all the

Requirement or Not, That is the Question 111

requirements and non-requirements among these five documents using the follow-
ing steps. First, we removed all the duplicates across the five files and considered
unique chunks of text. To avoid selecting potential non-requirements as require-
ments, we selected only the requirements that were also allocated to a team for
development. A total set of 1680 requirements and 1293 non-requirements from
the industrial documents was reached, as shown in the first row of Table 1.

Public Dronology Dataset. The dronology public dataset consists of 398 entries
of various types such as “components”, “requirements”, “design definitions”,
and “sub-task”. Among these entries, 99 entries are tagged as requirements. We
prepared the dronology dataset for this study as follows. First, we considered all
the requirements as requirements and components, design definitions, and sub-
tasks as non-requirements. Then, we dropped (19 entries) entries with no text.
A total set of 99 requirements and 280 non-requirements was reached, as shown
in the last row of Table 1. Note that this dataset does not directly represent the
studied context; however, we argue that evaluating the pipelines on this similar
dataset would support replication and reproducibility of our results.

All the considered classification pipelines (see the coming section) are fed the
data with and without pre-processing. As shown in the Sent. column, the total
number of sentences in the considered datasets are 8,332 and 533, respectively.
On average, each of the entries consists of 39 and 25 words. After pre-processing
and stop word removal, the average words across all entries drops to 20 and 13 for
the industrial and public datasets, respectively. Due to the uneven distribution
of data over the labels, the p-fold cross-validation method is not employed for
evaluation [11]. As typical, we used stratified five-fold cross-validation to evaluate
the selected pipelines. The average number of entries per fold in the training set
and the test are 2378 and 595, respectively.

3.4 Pipelines for Distinguishing Requirements

For this study, we considered the most seminal text classification approaches
for evaluation in distinguishing requirements from ordinary text. As typical in
the NLP domain, pre-processing of the input text might impact classification
performance. Therefore, we also consider the datasets both with and without
pre-processing. In addition, we also consider a baseline random pipeline (W.
Rand.) that classifies input as a requirement or not based on their frequency
distribution in the dataset.

Pre-processing: Our pre-processing pipeline consists of tokenization, stop-words
removal, part-of-speech (POS) tagging, and lemmatization of the input text
using spaCy [17]. An output of the pre-processing pipeline for the requirement
‘6.3.1’ from Fig. 1 is presented as follows. “maximum power draw unit train
formation compatible network rail infrastructure”.

Traditional ML-Based classifiers: For lexical classifiers, we considered widely
used and recommended ML algorithms, e.g., Support Vector Machines (SVM),

112 S. Bashir et al.

Logistic Regression (LR), DT, Random Forest (RF), and NB. For a fair com-
parison and tuning, we applied random multi-search optimization [6] to select
the optimal hyperparameters. SVM and LR achieved better results on evalua-
tion metrics when trained with normalized and reduced tfidf vectors using PCA.
However, the rest of the ML pipelines—RF, DT, and NB—performed better
with normalized TF-IDF vectors without PCA-based dimensionality reduction.

Deep Semantic Representation Based Classifiers: For the training and evalua-
tion of DL-based LSTM networks, we use FT and GLV LMs—pre-trained and
custom (self-trained)—embeddings for semantic representation. To generate the
custom embeddings, we train the FT LM on 20 epochs, with word embeddings
(WE) dimension size set to 100 and window size set to three. For custom GLV
embeddings, we get the best results when the window size is set to 10, the learn-
ing rate is set to 0.05, the WE dimension size is 100, and the epochs are set to
30. We defined a two-layer LSTM network to train on custom and pre-trained
WEs. To minimize the training loss function, we used Adam [21] optimizer with a
learning rate of 0.001. Furthermore, we prevent the over-fitting of the network by
appending a dropout layer—randomly dropping units with their connections—
with a rate of 0.1 after every LSTM layer. The batch, epochs, and maximum
sequence sizes are set as 32, 10, and 128, respectively.

We selected widely used BERT variants, i.e., SciBERT, RoBERTa, BERT
base, XLMRoBERTa (XRBERT), DistilBERT (DisBERT), and XLNet. To fine-
tune different variations of the token-based BERT family, we employ a BERT
WordPiece [37] tokenizer to prepare the datasets. The WordPiece tokenizer splits
the words of a text into one word per token or into word pieces—where one word
is tokenized into multiple words. We use the AdamW-optimizer, an adoption of
Adam with a weight decay of 0.01, to optimize the weights while fine-tuning
the token-based BERT network [23]. Furthermore, we select a maximal learning
rate of 2e-05 instead of aggressive learning rates with the purpose of avoiding
catastrophic forgetting of BERT pre-trained knowledge [30]. We set a practical
batch and maximum sequence size as 16 and 128 across all the token-based
BERT pipelines. We set the epoch size as 10 to iterate the datasets over the
BERT’s network. The reason behind selecting a higher number of epochs on
relatively smaller datasets is that BERT’s common one-size-fits-all is sub-optimal
and needs more training time to stabilize the network [38]. However, some studies
in the literature have set an even higher number of epochs (e.g. [16]), but we
argue it may lead to over-fitting.

Few-Shot Learning Based on Sentence Transformers: To fine-tune different vari-
ations of pre-trained ST, we utilize the SETFIT framework for our downstream
requirements classification task. SETFIT consists of a two-step training app-
roach. In the first step, we fine-tuned ST on a limited dataset—few shots—with
a contrastive training approach—frequently used for image similarity [22]. In a
few-shot scenario, contrastive fine-tuning enlarges the training dataset by cre-
ating positive and negative pairs through in-class and out-class selection. In
the second step, we train an LR (Logistic Regression) model as a classification
head on the embeddings—encoded through fine-tuned ST—with original labeled

Requirement or Not, That is the Question 113

training data. For evaluation, fine-tuned ST generates the sentence embeddings
of unseen examples, and then the LR model predicts the class label of the input
sentence embeddings. To fine-tune the ST model, we use the cosine-similarity
loss function with a learning rate of 2e-5 and a batch size of 16. We set the
number of iterations for the generation of text pairs for contrastive learning to
20 with one epoch.

3.5 Metrics for Evaluation

We use the standard evaluation metrics for text classification, as follows. Accu-
racy (A) is the ratio of the number of correct predictions and the total pre-
dictions. Precision (Prec.) is the ratio of correct positive predictions and the
total number of positive predictions. Recall (Rec.) quantifies the number of cor-
rect positive predictions from all possible positive predictions. F1 score (F1) is
the harmonic mean of precision and recall. We report the macro and weighted
average across the fold for all our evaluation metrics. However, to answer our
research questions, we use weighted averages of the metrics for simplicity.

3.6 Execution Procedure

Both datasets’ tagged requirements and information are moved to two separate
files. Using random stratified five-fold sampling [19], we created five folds from
each dataset for cross-validation. As mentioned, each fold consists of 80% of the
randomly sampled data in the training set and 20% of the data in the holdout
set. All the selected pipelines were fed with the five folds for training the models,
and the holdout sets were used to compute the evaluation metrics. In the case
of the few-shot classification pipelines, we only selected 10% and 20% of the
training set as folds to train the model and evaluated it using the entire holdout
set. We executed all the experiments on a local server using parallel computing.
The server is configured with four Nvidia Tesla M10 graphics processing units,
an Intel Xeon Gold 5122 processor @ 3.60GHz, and primary memory of 256 GB.

4 Results and Discussion

Table 2 and Table 3 show the experiment’s results. The names of Pipelines start-
ing with a ‘p’ indicate that our pre-processing pipeline was coupled with the clas-
sification pipeline. The Weighted Average and Macro Average columns show
the weighted and macro averages of our evaluation metrics across the five folds.
Avg. A. shows the average accuracy of the pipelines.

RQ1: Performance. As shown in Table 2, among the traditional machine
learning-based approaches, SVM slightly outperformed the others in terms of F1
score. Regarding accuracy, RF and LR slightly outperformed all other require-
ment identification pipelines based on ML. A similar trend can also be observed
in the public dataset. This is in line with the results in the literature. Inter-
estingly, the deep-learning-based LSTM model combined with the word embed-
dings model does not exhibit a significant improvement compared to traditional

114 S. Bashir et al.

Table 2. Performance and execution time of the pipelines on industrial case

Pipeline Setup Weighted Average Macro Average Avg. A. Time (mins)

Prec. Rec. F1 Prec. Rec. F1 A Tr Ts

W. Rand. Freq. based .49 .49 .49 .49 .49 .48 .49 – –

SVM Norm., PCA .79 .79 .79 .80 .78 .78 .78 .70 .02

pSVM Norm., PCA .78 .78 .78 .79 .77 .77 .78 .74 .09

NB Norm .74 .69 .69 .73 .71 .69 .69 <.01 <.01

pNB Norm .74 .68 .67 .72 .70 .68 .68 .29 .07

DT Norm .72 .72 .72 .71 .71 .71 .71 <.01 <.01

pDT Norm .71 .71 .71 .71 .71 .71 .71 .29 .07

LR Norm., PCA .79 .79 .78 .79 .77 .78 .79 .30 <.01

pLR Norm., PCA .78 .78 .78 .79 .76 .77 .78 .41 .07

RF Norm .79 .79 .79 .79 .78 .78 .79 <.01 <.01

pRF Norm. .79 .78 .78 .79 .77 .77 .78 .38 .07

LSTM FT custom .77 .77 .77 .76 .76 .76 .77 1 .02

pLSTM FT custom .75 .75 .75 .75 .75 .74 .75 1 .08

LSTM FT pre-train .75 .75 .75 .74 .74 .74 .75 2 .02

pLSTM FT pre-train .72 .72 .72 .72 .72 .72 .72 1.2 .08

LSTM GLV custom .77 .77 .77 .77 .76 .76 .77 2 .02

pLSTM GLV custom .76 .76 .76 .76 .75 .76 .76 1.2 .09

LSTM GLV pre-train .78 .78 .78 .78 .77 .78 .78 2 .02

pLSTM GLV pre-train .78 .78 .78 .78 .77 .78 .78 1.3 .08

SciBERT uncased .82 .81 .81 .82 .80 .80 .81 34 .25

pSciBERT uncased .80 .78 .76 .81 .75 .75 .78 32 .30

RoBERTa base .81 .81 .81 .82 .80 .80 .81 39 .27

pRoBERTa base .80 .79 .79 .81 .78 .78 .79 37 .32

BERT base, cased .82 .82 .81 .82 .81 .81 .82 35 .29

pBERT base, cased .79 .79 .79 .79 .79 .79 .80 32 .32

BERT base, uncased .82 .82 .82 .82 .81 .81 .82 34 .29

pBERT base, uncased .80 .80 .80 .80 .79 .79 .80 32 .33

XRBERT base .82 .81 .81 .82 .80 .81 .81 57 .29

pXRBERT base .78 .77 .77 .78 .76 .76 .77 41 .25

DisBERT base, cased .81 .81 .81 .81 .80 .80 .81 31 .13

pDisBERT base, cased .80 .80 .80 .80 .79 .79 .80 25 .18

DisBERT base, uncased .81 .81 .81 .81 .81 .80 .81 31 .15

pDisBERT base, uncased .80 .80 .70 .81 .78 .79 .80 29 .21

XLNet base .81 .81 .80 .81 .80 .80 .81 47 .36

pXLNet base .81 .80 .80 .81 .79 .79 .80 47 .42

S-BERT 10% train .75 .75 .75 .75 .74 .75 .75 24 .14

pS-BERT 10% train .73 .73 .73 .72 .72 .72 .73 18 .20

Mini-LM 10% train .74 .74 .74 .74 .74 .74 .74 7 .04

pMini-LM 10% train .72 .72 .72 .72 .72 .71 .72 6 .10

S-BERT 20% train .77 .77 .76 .76 .76 .76 .77 45 .17

pS-BERT 20% train .74 .74 .74 .74 .74 .74 .74 37 .20

Mini-LM 20% train .75 .75 .75 .75 .74 .74 .75 14 .03

pMini-LM 20% train .72 .72 .72 .72 .72 .72 .72 11 .10

Requirement or Not, That is the Question 115

Table 3. Performance and execution time of the pipelines on the Dronology public
dataset

Pipeline Setup Weighted Average Macro Average Avg. A. Time (mins)

Prec. Rec. F1 Prec. Rec. F1 A Tr Ts

W. Rand. Freq. based .60 .58 .59 .48 .48 .48 .58 – –

SVM Norm., PCA .78 .79 .75 .76 .63 .64 .78 .18 < .01

pSVM Norm., PCA .78 .77 .70 .80 .57 .55 .77 .03 <.01

NB Norm .70 .55 .58 .58 .61 .54 .55 <.01 <.01

pNB Norm .71 .56 .58 .60 .62 .55 .56 .03 <.01

DT Norm .74 .74 .74 .67 .66 .66 .74 <.01 <.01

pDT Norm .72 .72 .72 .64 .63 .63 .72 .03 <.01

LR Norm., PCA .74 .75 .67 .73 .54 .51 .75 .14 .02

pLR Norm., PCA .70 .75 .64 .67 .52 .46 .74 .03 < .01

RF Norm .76 .78 .75 .72 .64 .65 .78 .01 <.01

pRF Norm. .77 .78 .75 .74 .63 .65 .78 .04 <.01

LSTM FT custom .75 .78 .73 .72 .61 .61 .78 .24 .01

pLSTM FT custom .76 .77 .75 .71 .66 .67 .77 .18 .02

LSTM FT pre-train .74 .76 .75 .67 .66 .66 .76 .23 .01

pLSTM FT pre-train .67 .68 .68 .58 .57 .58 .68 .17 .02

LSTM GLV custom .73 .75 .73 .65 .66 .63 .75 .23 .01

pLSTM GLV custom .77 .78 .77 .72 .69 .69 .78 .17 .02

LSTM GLV pre-train .80 .80 .79 .74 .73 .73 .80 .26 .01

pLSTM GLV pre-train .74 .75 .74 .68 .65 .66 .75 .18 .02

SciBERT uncased .84 .84 .83 .79 .78 .78 .83 5 .03

pSciBERT uncased .87 .87 .86 .84 .80 .82 .87 5 .03

RoBERTa base .82 .86 .84 .76 .78 .77 .86 5 .03

pRoBERTa base .80 .81 .79 .77 .69 .70 .81 5 .04

BERT base, cased .88 .88 .87 .85 .83 .83 .88 3 .01

pBERT base, cased .83 .84 .82 .81 .74 .76 .84 3 .03

BERT base, uncased .88 .88 .87 .84 .84 .83 .88 3.5 .02

pBERT base, uncased .83 .84 .83 .80 .75 .77 .84 3 .03

XRBERT base .86 .86 .86 .82 .83 .82 .86 7 .03

pXRBERT base .86 .86 .86 .82 .83 .82 .81 7 .04

DisBERT base, cased .85 .85 .85 .80 .81 .80 .85 3 .01

pDisBERT base, cased .83 .83 .82 .79 .75 .76 .83 3 .02

DisBERT base, uncased .85 .86 .85 .81 .81 .80 .86 3 .01

pDisBERT base, uncased .82 .83 .82 .79 .74 .75 .83 3 .02

XLNet base .88 .87 .87 .85 .83 .83 .87 6 .04

pXLNet base .82 .83 .83 .78 .76 .77 .83 6.5 .05

S-BERT 10% train .75 .65 .66 .64 .67 .62 .65 3 .04

pS-BERT 10% train .68 .59 .61 .57 .58 .55 .59 2 .04

Mini-LM 10% train .76 .67 .69 .66 .70 .64 .67 1 <.01

pMini-LM 10% train .70 .56 .58 .58 .60 .54 .56 .40 .01

S-BERT 20% train .75 .65 .66 .64 .67 .62 .67 4 .03

pS-BERT 20% train .74 .65 .67 .63 .66 .62 .65 4 .04

Mini-LM 20% train .79 .68 .70 .68 .73 .66 .68 2 <.01

pMini-LM 20% train .77 .71 .72 .67 .72 .67 .71 1 .01

116 S. Bashir et al.

ML algorithms for classification in both public and industrial cases. Our results
indicated that SVM is closely followed by LSTM coupled with the pre-trained
GLV WE model. We argue that this could be because of the impact of feature
engineering in SVM. Generally, SVM’s performance is similar or better com-
pared to artificial neural networks (ANN) when there is less training dataset.
On the other hand, on average, the BERT family slightly outperformed all other
pipelines with traditional fine-tuning. The BERT base uncased-based pipeline
for requirements identification slightly outperformed all other pipelines across
all evaluation metrics, with an average F1 score of 0.82 for the industrial dataset
and 0.87 on the public dataset. This could be explained by BERTs’ ability to
capture the long-range dependencies in sequential data through its so-called
self-attention mechanism. Additionally, the capability of fine-tuning BERT pre-
trained parameters on task-specific datasets allows the model to better incor-
porate domain-specific knowledge than other traditional approaches. All other
sub-families of BERT—SciBERT, RoBERTA, XRBERT, and DisBERT—closely
followed the BERT base uncased-based pipeline. In addition, the performance
of XLNet is also close to the performance of the BERT family. The architecture
of XLNet and BERT family models are different, but they share a similar pre-
training objective to capture the contextual relationships in natural language
data. Therefore, when fine-tuned on a similar dataset for a classification task,
there is not a significant difference in terms of evaluation metrics.

The lack of larger datasets in the RE domain is a commonly highlighted
problem in the literature [5,14,39]. Therefore, evaluating few-shot learning
approaches for requirements identification is equally important. Our results show
that our selected sentence transformer-based few-shot classification pipelines for
requirements identification achieved comparable results with as little data as
20% of the training set used for training the models. The few-shots classifica-
tion pipelines also performed very well when only 10% of training data was used
for training. In our industrial case, the best-performing few-shot classification
pipeline is the pipeline based on the S-BERT model. For comparison, fine-tuned
S-BERT achieves an F1 performance score of 0.76, which is only 0.06 less than
the best-performing fined-tuned BERT uncased pipeline on a complete dataset.
This is a significant step in the RE domain because S-BERT only requires a
few samples to fine-tune the model, and it can address the standing challenge of
insufficient annotated RE datasets. Furthermore, this can help RE researchers
to completely exploit DL classifiers’ usage in various phases of the RE.

Based on the presented results, we summarize an answer to RQ1.
Answer to RQ1. The BERT base uncased-based pipeline for distinguish-
ing requirements from general text slightly outperformed all other pipelines
across the two datasets with an average F1 score of 0.85. However, no
significant difference in the performance of the BERT family is observed.
Results further indicate that few-shot classification pipelines for distinguish-
ing requirements perform well (with an F1 score of 0.76) on significantly
fewer samples.

Requirement or Not, That is the Question 117

Note that the current performance evaluation of the pipelines is based solely on
the results obtained from the already annotated datasets. However, to further
assess and validate the effectiveness of the pipelines in practice, it is necessary
to conduct a controlled experiment in an industrial setting. This is because the
real-world efficiency of the automated pipelines for such tasks is also dependent
on the environment in which it will be used [7]. Additionally, the evaluation of
automated pipelines must consider the context for its performance evaluation
relative to the task manually performed by humans. Therefore, following the
study of Winkler et al. [36], in the future, we plan to perform an empirical study
to further validate our solution in practice. The findings of such an experiment
would lead to further improvements in the pipelines and would highlight the
avenues for future research in the studied context.

RQ2: Impact of pre-processing. Table 2 and 3 also contains the evalua-
tion results of the pipelines with pre-processing. Based on our experience and
literature in NLP, traditional ML-based approaches typically improve perfor-
mance when pre-processing is applied [1,2]. However, we found a general trend
in the task of distinguishing requirements; on average, pre-processing has a neg-
ative impact on classification performance. Particularly among the traditional
approaches, all pipelines (except LR and NB) show a decrement of up to .02
in the F1 score when pre-processing is applied. The LSTM family also shows a
negative relationship between pre-processing and F1 score. However, the LSTM
pipeline based on the GLV word embedding model for distinguishing require-
ments shows no impact on performance when pre-processing is applied. Finally,
as expected for all the transformer-based models, pre-processing has a negative
impact on the model performance. Based on these results, we summarized the
answer to RQ2 as follows.

Answer to RQ2. Generally, we observed a negative impact of pre-
processing (with stop words removal and lemmatization) on model per-
formance in the task of distinguishing requirements from general text.

RQ3: Execution Time. The Time (mins) column in Table 2 and Table 3 also
shows the average execution time of the pipelines per fold both in training (Tr)
and in inference mode (Ts). Pipelines with pre-processing—both in training and
inference mode—also report an average pre-processing time added to the overall
time. In other words, the Time (mins) column shows the pipeline’s average
end-to-end execution time per fold.

As expected, the traditional ML-based and LSTM-based approaches con-
verge faster, with an average end-to-end execution time of under two minutes
in training. Likewise, the average end-to-end execution time in inference mode
across the folds—with 595 and 76 entries per fold in the industrial and public
dataset—is also under a minute. In addition, for fine-tuning the BERT family,
the end-to-end execution time is under an hour in the worst case. Note that
the pre-processing for LSTM and BERT family does add an overhead. However,
in some cases, the same pipeline with pre-processing takes even less time than
the one without pre-processing. This could be explained by the fact that the

118 S. Bashir et al.

same model has to train on less vocabulary than when the data was not pre-
processed. Nevertheless, the reported execution time in training still shows a
trend of increase as the size of the model increases. BERT family averaged an
inference time of under a minute per fold. As fine-tuning is done only once per
task and can be done at night, the engineers do not have to wait for more than
a minute in inference mode—which is how end-users use these models. Based on
the results, we summarised an answer to RQ3 as follows.

Answer to RQ3. Pipeline for distinguishing requirements produces results
for input (500+ entries as input) in under two minutes in the worst case.
Fine-tuning large language models for classification tasks could take hours
on high-compute units when training on a dataset with 2300 entries. How-
ever, fine-tuning is often done once per task. Therefore, the approaches could
still be practical in a real-world context and can aid the project acquisition
process.

5 Threats to Validity

This section presents validity threats according to Runeson et al. [26].

Construct Validity. As typical, we cast the requirement identification as a binary
text classification problem. Our unit of classification ranges over multiple sen-
tences. However, in some cases, the input might contain some sentences that are
requirements and others that are not. We do not tackle such cases. We argue
that considering already delivered projects’ tender documents where experts
tagged requirements and allocated them to teams for implementation resolves
such issues.

Internal Validity. Internal validity threats affect the validity and credibility of
our results. We based our implementation on open-source libraries and publicly
available language models to address potential internal validity threats. Further-
more, we shared the replication package and a running tool to support future
research.

External Validity. Our results are obtained from five representative documents
from one company that might not represent the whole railway domain. There-
fore, for the generalizability of our results, we also include a public dataset for
evaluation. However, as typical for case studies, we do not claim the generaliz-
ability of our results beyond the studied context.

6 Conclusion and Future Work

Requirements identification in larger documents enables a quick response to
the call for tenders and could help later RE tasks such as retrieval for reuse
and deriving low-level requirements. This study is oriented toward finding a

Requirement or Not, That is the Question 119

practical solution to the requirements identification problem in a large railway
company using classification. Therefore, the study evaluates a variety of classifi-
cation approaches in the requirements identification contexts. Our results show
that the transformer-based approaches slightly outperform all other approaches
in the requirements identification task. Particularly, the BERT base uncased-
based pipeline performs the best in terms of F1 score and produces results in
practical time. Finally, results also indicate that few-shot classifiers can achieve
comparable performance with as little as 20% of the training data. We argue
that the use of few-shot learning in RE tasks should be investigated further.

In the future, we plan to conduct a controlled experiment in the studied set-
tings to evaluate the effectiveness of the developed solution for comparison to
manual requirements identification. Additionally, we aim to pre-train large lan-
guage models on railway industry-specific documents and compare the results in
two classification tasks, i.e., requirements identification and allocation of require-
ments to different teams. Extending the current tool to estimate the risk asso-
ciated with a tender call is also planned for future work.

Acknowledgement. This work is partially funded by the AIDOaRt (KDT) and
SmartDelta [27] (ITEA) projects.

References

1. Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E., Saadatmand, M., Sundmark, D.:
On the relationship between similar requirements and similar software. Requir.
Eng. 28, 1–25 (2022)

2. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D., Lindskog, C.: Automated
reuse recommendation of product line assets based on natural language require-
ments. In: Ben Sassi, S., Ducasse, S., Mili, H. (eds.) ICSR 2020. LNCS, vol. 12541,
pp. 173–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64694-
3 11

3. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.: Automated
demarcation of requirements in textual specifications: a machine learning-based
approach. Empir. Softw. Eng. 25(6), 5454–5497 (2020). https://doi.org/10.1007/
s10664-020-09864-1

4. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Vaz, E.: A machine
learning-based approach for demarcating requirements in textual specifications.
In: 2019 IEEE 27th International Requirements Engineering Conference (RE), pp.
51–62. IEEE (2019)

5. Alhoshan, W., Zhao, L., Ferrari, A., Letsholo, K.J.: A zero-shot learning approach
to classifying requirements: a preliminary study. In: Gervasi, V., Vogelsang, A.
(eds.) REFSQ 2022. LNCS, vol. 13216, pp. 52–59. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-98464-9 5

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(2), 281–305 (2012)

7. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering
tasks. Empir. Softw. Eng. 26(6), 1–77 (2021). https://doi.org/10.1007/s10664-021-
09986-0

https://doi.org/10.1007/978-3-030-64694-3_11
https://doi.org/10.1007/978-3-030-64694-3_11
https://doi.org/10.1007/s10664-020-09864-1
https://doi.org/10.1007/s10664-020-09864-1
https://doi.org/10.1007/978-3-030-98464-9_5
https://doi.org/10.1007/978-3-030-98464-9_5
https://doi.org/10.1007/s10664-021-09986-0
https://doi.org/10.1007/s10664-021-09986-0

120 S. Bashir et al.

8. Binkhonain, M., Zhao, L.: A review of machine learning algorithms for identifi-
cation and classification of non-functional requirements. Expert Syst. Appl. X 1,
100001 (2019)

9. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

10. Cleland-Huang, J., Vierhauser, M., Bayley, S.: Dronology: an incubator for cyber-
physical systems research. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-
NIER), pp. 109–112 (2018)

11. Dell’Anna, D., Aydemir, F.B., Dalpiaz, F.: Evaluating classifiers in se research: the
ecser pipeline and two replication studies. Empir. Softw. Eng. 28(1), 1–40 (2023)

12. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are “non-functional” requirements
really non-functional? an investigation of non-functional requirements in practice.
In: 38th International Conference on Software Engineering, pp. 832–842 (2016)

13. Falkner, A., Palomares, C., Franch, X., Schenner, G., Aznar, P., Schoerghuber, A.:
Identifying requirements in requests for proposal: a research preview. In: Knauss,
E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp. 176–182. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-15538-4 13

14. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language
requirements processing: a 4D vision. IEEE Softw. 34(6), 28–35 (2017)

15. Herwanto, G.B., Quirchmayr, G., Tjoa, A.M.: A named entity recognition based
approach for privacy requirements engineering. In: 2021 IEEE 29th International
Requirements Engineering Conference Workshops (REW). IEEE (2021)

16. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: Norbert: transfer learning for require-
ments classification. In: 2020 IEEE 28th International Requirements Engineering
Conference (RE), pp. 169–179. IEEE (2020)

17. Honnibal, M., Montani, I.: spacy 2: natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing. To Appear
7(1), 411–420 (2017)

18. Huang, Z., Xu, W., Yu, K.: Bidirectional lstm-crf models for sequence tagging.
arXiv:1508.01991 (2015)

19. Hubert, M., Rousseeuw, P.: International encyclopedia of statistical science (2010)
20. Jindal, R., Malhotra, R., Jain, A.: Automated classification of security require-

ments. In: 2016 International Conference on Advances in Computing, Communi-
cations and Informatics (ICACCI), pp. 2027–2033. IEEE (2016)

21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

22. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-
shot image recognition. In: ICML Deep Learning Workshop, Lille, vol. 2 (2015)

23. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)
24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-

sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

25. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084 (2019)

26. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

27. Saadatmand, M., Enoiu, E.P., Schlingloff, H., Felderer, M., Afzal, W.: Smartdelta:
automated quality assurance and optimization in incremental industrial software
systems development. In: 25th Euromicro Conference on Digital System Design
(DSD) (2022)

https://doi.org/10.1007/978-3-030-15538-4_13
http://arxiv.org/abs/1508.01991
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1908.10084

Requirement or Not, That is the Question 121

28. Sainani, A., Anish, P.R., Joshi, V., Ghaisas, S.: Extracting and classifying require-
ments from software engineering contracts. In: 2020 IEEE 28th International
Requirements Engineering Conference (RE), pp. 147–157. IEEE (2020)

29. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv:1910.01108 (2019)

30. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune BERT for text classification?
In: Sun, M., Huang, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 2019. LNCS (LNAI),
vol. 11856, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32381-3 16

31. Tunstall, L., et al.: Efficient few-shot learning without prompts. arXiv:2209.11055
(2022)

32. Varenov, V., Gabdrahmanov, A.: Security requirements classification into groups
using nlp transformers. In: 2021 IEEE 29th International Requirements Engineer-
ing Conference Workshops (REW), pp. 444–450. IEEE (2021)

33. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30,
1–11 (2017)

34. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: Minilm: deep self-
attention distillation for task-agnostic compression of pre-trained transformers.
Adv. Neural Inf. Process. Syst. 33, 5776–5788 (2020)

35. Winkler, J., Vogelsang, A.: Automatic classification of requirements based on con-
volutional neural networks. In: 2016 IEEE 24th International Requirements Engi-
neering Conference Workshops (REW), pp. 39–45. IEEE (2016)

36. Winkler, J.P., Grönberg, J., Vogelsang, A.: Optimizing for recall in automatic
requirements classification: An empirical study. In: 2019 IEEE 27th International
Requirements Engineering Conference (RE), pp. 40–50. IEEE (2019)

37. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

38. Zhang, T., Wu, F., Katiyar, A., Weinberger, K.Q., Artzi, Y.: Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987 (2020)

39. Zhao, L., et al.: Natural language processing for requirements engineering: a sys-
tematic mapping study. ACM Comput. Surv. (CSUR) 54(3), 1–41 (2021)

http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-3-030-32381-3_16
https://doi.org/10.1007/978-3-030-32381-3_16
http://arxiv.org/abs/2209.11055
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/2006.05987

Summarization of Elicitation
Conversations to Locate

Requirements-Relevant Information

Tjerk Spijkman1,2(B) , Xavier de Bondt1,2, Fabiano Dalpiaz1(B) ,
and Sjaak Brinkkemper1

1 Department of Information and Computing Sciences, Utrecht University, Utrecht,
The Netherlands

{f.dalpiaz,s.brinkkemper}@uu.nl
2 fizor., Utrecht, The Netherlands

{tjerk.spijkman,xavier.de.bondt}@fizor.com

Abstract. [Context and motivation] Conversations around require-
ments, such as interviews and workshops, are a key activity of require-
ments elicitation, and play a significant role in the creation of require-
ments specifications. [Question/problem] While these conversations
contain a wealth of knowledge, requirements engineers use them mainly
through note-taking during the conversation and by recalling the infor-
mation from their memory. There is potential for supporting practition-
ers by retrieving important information from the recordings of these con-
versations. [Principal ideas/results] Although transcriptions can be
automatically generated with good accuracy, they often contain exces-
sive text to be efficiently used for processing requirements elicitation ses-
sions. Thus, we observed a need to transform these datasets into a use-
ful format for requirements engineers to analyze. [Contribution] We
present REConSum, a prototype that utilizes Natural Language Pro-
cessing (NLP) to summarize requirements conversations. REConSum

takes as input a transcribed conversation, and it filters the speaker turns
by keeping only those that include a question and that are expected to
contain, or to be answered with, requirements-relevant information. In
addition to presenting REConSum, we experiment with different algo-
rithms to assess the most effective combination.

Keywords: Requirements Elicitation · Natural Language Processing ·
Conversational RE · Requirements-Relevant Information

1 Introduction

Requirements elicitation concerns the activities of seeking, uncovering, acquiring,
and elaborating requirements [38]. This information is often gathered through
conversational activities in which a requirements engineer (or analyst) works
with system stakeholders to get an understanding of the goals and design of
the system [9]. According to the NaPiRE survey [35], interviews and facilitated
sessions such as workshops are the most frequently used elicitation techniques:
73% and 67% of the respondents state to be using them, respectively.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 122–139, 2023.
https://doi.org/10.1007/978-3-031-29786-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_9&domain=pdf
http://orcid.org/0000-0003-2726-3065
http://orcid.org/0000-0003-4480-3887
http://orcid.org/0000-0002-2977-8911
https://doi.org/10.1007/978-3-031-29786-1_9

Summarization of Elicitation Conversations 123

Researchers have studied requirements conversations, notably interviews, and
found that note-taking is a useful activity [16] for the early detection of common
problems such as ambiguity [33]. However, these conversations can range from
a few hours to multiple days [2,28], thereby making it not only likely for the
analyst to miss out on certain information, but also cognitively demanding as
they would need to focus both on the note-taking and on keeping a natural flow.

The recordings of requirements conversations contain valuable information
that can easily be lost in the overall picture of the elicitation. While creating
and investigating transcriptions can be time consuming, the increasing remote
work – including the online conduction of interviews and workshops – offers the
opportunity to use the capability of modern online meeting tools like Microsoft
Teams and Zoom Meetings to generate transcriptions that consistently improve
their precision through neural network approaches [3].

Although manual reviews are possible for short conversations and they are a
useful educational tool [30], we argue that analysts need to be supported in the
analysis of longer real-life conversations, and that Natural Language Processing
(NLP) can be fruitfully used to such an extent.

In this paper, we propose REConSum (Requirements Elicitation Conver-
sations Summarizer), a NLP prototype tool that can assist practitioners and
researchers in processing elicitation conversations by summarizing the transcrip-
tions and extracting requirements-relevant information. We utilize the Question
& Answer (Q&A) structure prevalent in conversations, as discussed in Sect. 2.
REConSum retains only relevant questions and their answers through extrac-
tive summarization [12], thereby making transcripts easier to review, as prac-
titioners would see a short version of the original conversation transcript. The
outputs of REConSum are meant to be used in a front-end to enable explo-
ration of such conversations, as per the mockup of Fig. 1.

Fig. 1. Mockup visualization of the outputs of REConSum. In this example, questions
Q1–Q10 and Q12–Q24 are hidden as they are expected to be irrelevant.

124 T. Spijkman et al.

To effectively summarize a document, one needs to gain a deep under-
standing of the document to gather the relevant information. In our con-
text, this amounts to identifying and extracting requirements-relevant informa-
tion from the transcript of a requirements conversation. We build on previous
research [28,29]: through data investigation and experimentation with a focus
group of RE students and practitioners, we gained a first understanding of what
requirements-relevant information exists in requirements conversations. Based
on these premises, we define the following research questions:

MRQ. How can we identify requirements-relevant information in a transcript of
a requirements elicitation conversation?

RQ1. How can we define requirements relevance in a transcript?
RQ2. How to design an automated approach for locating requirements-relevant

information?

The rest of this paper is structured as follows. In Sect. 2, we discuss
background and related work. Section 3 outlines the research method and
describes REConSum. We report on a validation of the approach in Sect. 4,
and finally, we present a discussion and future works in Sect. 5.

2 Background

Conversation Structures. There are many different types of conversations,
including small talk, troubles telling, and elicitation conversations [18]. Conver-
sation analysis (CA) is the systematic analysis of the talk produced in everyday
situations of human interaction [20]. CA goes beyond the scope of the spoken
words and it includes video recordings of the workplace, or the onscreen activi-
ties for a conversation between people playing a game. Mondada [23] states that
CA can utilize interviews not as a methodological resource for gathering infor-
mation, but to study how specific practitioners work. As interviews are a natural
setting for RE practitioners, this fits well in the context of this research.

We focus on the textual transcripts of a conversation: a sequence of utter-
ances (roughly, sentences) that are spoken by one of the participants. A set of
contiguous utterances by the same speaker is called a speaker turn. We acknowl-
edge that this is only a partial picture of a conversation, which excludes aspects
such as the use of artifacts (e.g., whiteboards), the analysis of intonation cues
and visual cues. Furthermore, the automated transcripts delivered through video
conferencing tools do not adhere to the standards used in conversation analysis,
as they do not identify elements such as pauses, speed/tempo of speech, and
overlapping talk [19]. While these additional perspectives are part of our future
work, in this paper, we focus on automatically generated transcripts, which are
already a valuable resource that is generally not considered by RE researchers
and practitioners.

Another topic of conversational analysis is the identification and character-
ization of recurrent interaction practices [26]. These consist of a set of actions:
asking, telling, requesting, inviting, complaining, etc. One of the key concepts in

Summarization of Elicitation Conversations 125

interaction practices is the adjacency pair [31], resulting from the turn-taking
format that is common in conversations [34]. Adjacency pairs are based on the
understanding that an utterance is related to what comes before, and what
comes next. An adjacency pair is composed of two speaker turns uttered by dif-
ferent speakers and placed adjacently [24]. For instance, a typical type of pair is
“Request for information” followed by “Informative answer”.

Stolcke et al. [32] discuss the lack of consensus on describing discourse struc-
ture; however, they argue that dialogue acts (DAs) are a useful first level of
analysis. A DA is roughly equivalent [32] to speech acts and adjacency pairs.
There are, however, differences between these theories. Take two questions such
as: “Did you do it?” and “What did you wear today?”. While speech acts [25]
consider both questions as illocutionary acts, DAs classify these into a Yes-No
question and Wh-question, respectively. DAs are a method for classifying dis-
course data using 42 different labels (see Table 1 for some examples). In our
research, we utilize libraries that enable the automated identification of DAs to
perform extractive summarization.

Related Works. In our previous research, we performed an empirical study to
determine the contents of one particular RE conversation common in practice:
fit-gap analysis [28], which aims to distinguish between those parts of a software
product that already fit the client from those gaps that needs to be addressed via
configuration or customization. The understanding gained from this work was
used in designing the Trace2Conv prototype tool that assists in establishing
automated pre-requirements specification traceability [29].

While focused on a different type of artifact, i.e., requirements specifications,
Abualhaija et al. [1] apply supervised machine learning to recognize and demar-
cate requirements in a free-form requirements specification. In their work, modal
verbs are used to determine important segments of the text, and parts of their
NLP pipeline inspired this work.

Another adjacent area of research is that of automated requirements classifi-
cation [6], which led to the development of NLP tools that organize requirements
into categories. A typical classification distinction is between functional and non-
functional requirements. To achieve such a classification, Kurtanović and Maalej
[22] apply supervised machine learning through support vector machines. Their
research shows that POS tags, word n-grams, modal verbs and the POS tag
‘cardinal number’ were the most informative. Similarly, higher-level linguistic
dependencies can be useful in classification, as shown by Dalpiaz et al. [7]. This
work also observes that the performance of classifiers degrades when used on
other datasets; this led to the birth of the ECSER pipeline for a rigorous evalu-
ation of classifiers in software engineering [10].

Only a few scholars have studied requirements conversations in depth. Alvarez
and Urla [2] performed a manual analysis of interview transcripts concerning the
construction of an ERP system; they studied the role of stakeholders and of client
stories. Ferrari et al. [16] conducted and analyzed 34 simulated interviews and iden-
tified four facets of ambiguity (unclarity, multiple understanding, incorrect disam-

126 T. Spijkman et al.

biguation and correct disambiguation); moreover, they found that ambiguity can
be a cue for the elicitation of tacit knowledge. Their follow-up work [14] explores
the use of voice and biofeedback to identify emotions that may represent engage-
ment. Bano et al. [4] analyze interviews by novices and they build an educational
framework for teaching how to conduct requirements interviews. The same authors
extend their approach by including (reverse) role-playing elements [15].

3 RECONSUM: A Tool for Summarizing RE Conversations

We designed REConSum according to the phases of the engineering cycle by
Wieringa [36], focusing on the first three phases (the design cycle) as the current
prototype has not yet been applied to practical cases. The code can be found in
GitHub1 and a persistent copy is in the online appendix [27]. In this section, we
discuss the problem investigation and solution design steps of Wieringa’s design
cycle. Sect. 4 reports on the validation step.

3.1 Problem Investigation and Solution Design Iterations

The problem addressed by this research is based on observations of the artifacts
from our previous research [28,29]. We found that RE conversations contain use-
ful information, but that their manual analysis is time consuming. This indicates
an opportunity for designing intelligent tools that can reduce the necessary effort
through automation.

To further explore the problem domain, we analyzed nine recordings of
requirements interviews conducted by master’s students at Utrecht University
in a simulated setting. These recordings were split across three different cases
(see [8] for details): IFA – the international football association portal, UMS – an
urban mobility simulator, and HMS – a hospital management system. All inter-
views had a similar time frame (max. 60 min) and structure, thereby allowing
us to consider multiple cases per domain as well as different domains.

Given the limited existing literature, the treatment design is approached in
an exploratory way. We went through multiple design iterations, which had the
definition of the term requirements-relevant information as a recurring theme.
Although a seemingly simple term, we found that answering the question “what
does it mean to be relevant” is hard. There is no single recipe to define if some-
thing is relevant to an analyst, as this may depend on the specific use case,
e.g., authoring requirements, searching for missing requirements, tracing require-
ments backwards, and implementing the requirements.

Discarded Designs. We initially expected to utilize the categories of
requirements-relevant information that we defined in previous research [28,29].
However, we found out that these categories were too context reliant. For exam-
ple, the as-is process is fundamental when replacing a legacy system, while the
to-be process is more important for a new system design [28]. Additionally, our

1 https://github.com/RELabUU/REConSum.

https://github.com/RELabUU/REConSum

Summarization of Elicitation Conversations 127

collection of transcripts was heterogeneous regarding the design activity (green-
field vs. brownfield), and several sentences were hard to classify as they described
the as-is by indicating something about the to-be.

We also attempted the design of a machine learning-based automated binary
classification of the transcript, with speaker turns being either relevant or irrel-
evant. The main challenges with this approach, however, were the heterogeneity
of the transcripts and the too limited amount of labeled data.

Extractive Question-Based Summarization. Through further exploration
of the artifacts, we found that the Q&A structure could effectively be used to
produce a condensed version of the conversation while still covering most of the
content. The idea was that of retaining only those questions that are (poten-
tially) relevant, and the analyst could then further navigate the conversation by
zooming in on the answers of those questions as shown in Fig. 1. This led to the
design detailed in this section; an approach that first classifies the text based on
its structure, focusing on the identification of a special kind of adjacency pairs:
questions and answers to those questions.

3.2 Question Identification and Relevance Detection

We aim to obtain an extractive summarization of a requirements conversation
consisting of only those speaker turns that include questions that are potentially
relevant for requirements engineers.

Formally, let a conversation C = (T1, T2, . . . , Tn) be a sequence of speaker
turns, where n ∈ N+ is a positive natural number. A speaker turn Ti is a
sequence of utterances (roughly, sentences) that are spoken by the same speaker:
given i,m ∈ N+, Ti = (U1, U2, . . . , Um). An utterance Uj is a sequence of words
by the same speaker: given j, p ∈ N+, Uj = (w1

j , . . . , w
p
j). We define two func-

tions. IsQuestion : U → {0, 1} is a Boolean function that returns 1 if and only if
U ∈ U is a question. IsRelevant : U → {0, 1} is a Boolean function that returns
1 if and only if U ∈ U is a relevant utterance for a requirements engineer. We
can now formally define our summarization function Summ : C → C, where C
is the domain of conversations, as follows:

Summ(C) = S. S is a sub-sequence of C and ∀T = (U1, . . . , Um) ∈ S,

∃k ∈ [1,m]. IsQuestion(Uk) ∧ IsRelevant(Uk)

REConSum Process. Figure 2 provides an overview of how REConSum

implements the summarization function Summ. It takes a requirements inter-
view transcript as an input, and first determines which speaker turns contain
a question. This is done utilizing Part-of-Speech tagging and/or Dialogue Act
classification. Then, REConSum determines if these questions are relevant by
assessing whether they contain domain-specific terms; our assumption is that
the presence of those terms is an indicator of relevance.

We determine whether a speaker turn includes domain-specific terms by cal-
culating Term Frequency–Inverse Document Frequency technique (TF–IDF). We

128 T. Spijkman et al.

Fig. 2. A process flow overview of REConSum.

first compute the Inverse Document Frequency (IDF) either of the transcript
itself (bottom-right scenario in Fig. 2) or of a context document (top-right sce-
nario in Fig. 2). We then calculate Term Frequency (TF) of a Wikipedia cor-
pus, which we take as a general-purpose corpus where the distribution of the
terms is not expected to reflect the specificity of the conversation domain. Then,
REConSum retains only those speaker turns that both include a question as
well as words with a high TF–IDF score, indicating that these terms are much
more frequent in the domain than in Wikipedia.

Algorithm 1: Identify Questions. The first stage of REConSum is to iden-
tify the questions in a transcript through (i) a deep learning classifier based on
dialogue acts, (ii) the occurrence of sequences of Part-of-Speech (POS) tags, or
(iii) either of the previous. The dialogue acts approach assigns a dialogue act
to each sentence in the speaker turn, while the approach based on POS tags
assigns these tags to parts of each sentence. These POS tags were taken from
the Penn Treebank POS Tagset2, which contains two clause-level tags that can
indicate questions [5]: SBARQ and SQ. These tags indicate four types of questions:
wh-questions, yes-no-questions, tag-questions, and choice-questions.

Our dialogue act-based approach relies on the off-the-shelf classifier
DialogTag3, which uses a neural architecture based on BERT [11] to assign a
dialogue act to a sentence. DialogTag uses a subset of the Switchboard-1 corpus;
the latter was created using 2,400 telephone conversations, with conversations
among 543 speakers on 70 topics [21]. Our implementation labels as question
those speaker turns that include a sentence that denotes one of the question
types that DialogTag identifies; frequent examples are in Table 1.

We also propose a third approach that aims at supporting those scenarios
where recall is more important than precision: we execute both of the previous
approaches and retain the speaker turns if they are included in either approach.

2 Our implementation is inspired by that of https://github.com/garcia2015/NLP
QuestionDetector.

3 https://github.com/bhavitvyamalik/DialogTag.

https://github.com/garcia2015/NLP_QuestionDetector
https://github.com/garcia2015/NLP_QuestionDetector
https://github.com/bhavitvyamalik/DialogTag

Summarization of Elicitation Conversations 129

Table 1. Examples of question types, based on dialogue act classification, that are
used by function DialogueActs in Algorithm 1.

Tag Example

Yes-No-Question Is there already some data that can be gathered from the
existing systems that can already be put in the new one or
not?

Wh-Question I’m gonna ask you, how long does it take for that person to
analyze the situation and uh monitor a certain road or
urban traffic situations?

Declarative Yes-No-Question So it would be a manual change, not a new iteration of the
automated schedule.

Backchannel in question form Um, this should also be made available I imagine, during a
match for instance, the score of the match should be
updated immediately once it’s changed. Right?

Open-Question What do you mean with ’local’ I.F.A.?

Rhetorical-Questions (...) We have done it in the in the other city the other year.
So why shouldn’t it work now?

Or-Clause So you think there should be the same rights for every
system user? Or do you think that one user should have
less rights capability?

Tag-Question Right?

Algorithm 1. Identify Questions
Input: C a set of speaker turns,
Output: T the set of speaker turns, with the questions marked

1: function DialogueActs(C)
2: for all sent ∈ C do
3: T [sent] ← sent
4: T [sent]question ← False
5: for all tag ∈ DialogTag.Dialogue ActsTokenizesent do
6: if ANY({-Question, Or-Clause}) ∈ tag then
7: T [sent]question ← True

8: return T

1: function Part-of-Speech-Tags(C)
2: for all sent ∈ C do
3: T [sent] ← sent
4: T [sent]question ← False
5: for all subtree ∈ NLP Annotatesent do
6: if subtree.POS tag ∈ {SBARQ, SQ} then
7: T [sent]question ← True

8: return T

1: function Combined(C)
2: T1 ← DialogueActsC
3: T2 ← Part-of-Speech-TagsC
4: for i = 0; i ¡ |C|; i++ do
5: T [sent] ← C[i]
6: T [sent]question ← T1[i]question ∨ T2[i]question

7: return T

The first step of REConSum is detailed in Algorithm 1. An input set C of
speaker turns is turned into a version T where the speaker turns with a question
are marked. The DialogueActs function loops through each sentence in C,

130 T. Spijkman et al.

retrieves the dialogue acts that apply to that sentence through the DialogTag
BERT-based classifier, and determines if the sentence contains one of the dia-
logue acts that indicate a question. Similarly, the Part-of-Speech-Tags func-
tion generates the POS trees of a sentence, and explores each of them to see if it
contains a question indication (SBARQ or SQ). The combined approach (function
Combined) returns those speaker turns that are identified as questions by at
least one of the other two functions.

Algorithm 2. Categorize Relevant Questions
Input: T a set of speaker turns, with the questions marked,

F a file to compare the relevance to; either a context document or the conversation transcript,
num words the number of unfiltered words you would like to categorize the questions on
(set to 60 in our experiments based on empirical testing),

Output: the set of speaker turns, with the questions and their relevance marked

1: function CreateWordList(F , num words)
2: IDF ← Load Wiki TF

3: File ← Preprocess FileF
4: Words ← Calculate TF-IDFIDF ,File
5: Word List ← TakeFirstNSortWords,num words
6: Word List ← Stemw ∈ Word List | w �∈ stop words
7: return Word List

1: function FilterQuestions(T , F)
2: Word List ← CreateWordListF , 60
3: for all sent ∈ T do
4: T [sent]relevant ← False
5: if T [sent]question then
6: for all word ∈ Split Sentencesent do
7: if Stemword ∈ Word List then
8: T [sent]relevant ← False

9: return T

Algorithm 2: Categorize Relevant Questions. In the second stage (right-
hand side of Fig. 2), REConSum looks for relevant questions based on the out-
puts of the first stage. REConSum implements two approaches, both reliant on
TF–IDF. In both cases, TF is calculated on the basis of a Wikipedia dataset
[17]. In the first approach, we calculate IDF on a document that describes the
application context (a context document), which provides us with words that can
indicate the relevance of a question. Based on TF–IDF, we retain only questions
that include words with a high TF–IDF value. In our second approach, we follow
the same process, but IDF is calculated on the transcript without the need to
use a context document.

This functionality is described in Algorithm 2, which includes two functions.
The first one (CreateWordList) takes as input (i) the file F we use to calculate
IDF: either the transcript or the context document, and (ii) an integer that
indicates the number of unfiltered words to categorize the outputs. After loading
the Wikipedia Term-Frequency and processing the file (F), the TF–IDF scores
can be calculated. After that, we sort on these scores and take the number of
unfiltered words that we specified. Finally, we remove stopwords, and we stem

Summarization of Elicitation Conversations 131

the remaining words. The second function (FilterQuestions) takes as inputs
the set of speaker turns, with the questions marked, from Algorithm 1 and the
same file F used by CreateWordList. It first creates a list of domain-specific
words by calling CreateWordList, and then marks the questions that contain
one of these words as relevant, thus returning a set of speaker turns where the
questions are marked and have their relevance indicated.

4 Evaluation

After explaining the design of our evaluation and golden standard in Sect. 4.1,
we present qualitative and quantitative results in Sect. 4.2.

4.1 Designing the Golden Standard

With the aim of measuring the performance of REConSum in identifying only
the relevant questions in a conversation, we set off to design a golden standard.
To do so, we performed a number of design iterations that were meant to define
the instrument through which the golden standard could be created. The goal
was to have this standard created by people who are not the authors of this
paper. To this end, the tagging was facilitated through a survey.

A key decision was establishing what context (how many speaker turns)
should be shown for each question, as we expected it would be difficult to rate
relevance without that information. We eventually decided to include the speaker
turn that includes the question, the previous turn, and the next one.

Table 2. Categorization of requirements-relevant information in the tagging

Functional requirement The speaker turn refers to functionality that the
software system has to exhibit. For example, register
users, schedule events, calculate something or allow
messaging

Non functional requirement Software quality or non-functional requirement. The
speaker turn refers to qualities that the system should
provide while delivering its functionalities, e.g., speed,
security, capacity, compatibility, reliability, usability,
portability

System users The speaker turn mentions the users of the system, or
other stakeholders that do not use the system

Current process understanding The speaker turn contains information about the
current process or system as-is, including current
problems that the interviewee is facing

Within or outside of the scope The speaker turn explicitly contains a discussion of
elements that should be in the system to-be or not.
These define the boundaries of the system’s scope

No requirements-relevant
information

The speaker turn does not contain any relevant
information.

Another challenge concerned deciding whether a segment was relevant. To
facilitate this, we defined a categorization of relevance inspired by our earlier

132 T. Spijkman et al.

work [28], as shown in Table 2. Sometimes the question itself was not rele-
vant, yet the surrounding text was. Therefore, the taggers were asked whether
requirements-relevant information: (a) could be expected in the answer to the
question; or (b) could be found in the speaker turn shown after the question.

The taggers were first asked to decide whether the segment included one of
the relevant categories in Table 2, and, if so, they could answer the questions
regarding where the relevant information was located. All taggers were provided
with a tagging guide (in our online appendix alongside the source code and the
results [27]), and an overview of the case being discussed.

Execution of Tagging. We created the golden standard for the nine datasets
shown in Table 3 by recruiting 18 taggers: either students familiar with require-
ments engineering or practitioners. Two of them tagged each dataset using a
Qualtrics survey: each participant was assigned a case, and they would see all of
the questions in the conversation in chronological order, as in Fig. 3. They would
go through the conversation one question at a time, with the option to return to
the previous question. As per Table 3, the participants saw on average circa 71%
of the conversation, and they could tag for relevance 58.8% of the conversation.
This difference arises because the participants could not tag the speaker turn
before the one where the question is located.

Table 3. Evaluation datasets. The UMS/IFA/HMS identifier refers to the case name
as per Sect. 3.1. The table also shows recording length, number of speaker turns, then
number (#) and percentage (%) of speaker turns (a) shown to the taggers, (b) that
could be tagged, and (c) that include questions. The ‘Relevant’ columns characterize
the gold standard defined by the taggers, and ‘Agreement’ shows inter-rater agreement
in percentage and using Cohen’s kappa.

Set Length mm:ss Speaker Turns

Total Shown Taggable Relevant Questions Relevant Agreement

% # % # % # % # % % k

1-UMS 50:23 167 117 70.1% 95 56.9% 61 64.2% 49 29.3% 31 63.3% 54.7% 0.20

2-IFA 49:15 148 107 72.3% 85 57.4% 67 78.8% 46 31.1% 34 73.9% 58.8% 0.21

3-UMS 41:29 98 69 70.4% 56 57.1% 36 64.3% 30 30.6% 14 46.7% 60.7% 0.16

4-HMS 23:05 69 50 72.5% 41 59.4% 31 75.6% 21 30.4% 15 71.4% 90.2% 0.75

5-IFA 58:06 179 132 73.7% 105 58.7% 51 48.6% 56 31.3% 20 35.7% 76.2% 0.53

6-HMS 38:25 116 77 66.4% 64 55.2% 44 68.8% 34 29.3% 17 50.0% 60.1% 0.22

7-IFA 47:12 162 109 67.3% 91 56.2% 79 86.8% 46 28.4% 41 89.1% 59.3% 0.07

8-HMS 39:24 155 115 74.2% 98 63.2% 68 69.4% 54 34.8% 38 70.4% 89.8% 0.76

9-HMS 30:31 80 65 81.3% 55 68.8% 39 70.9% 28 35.0% 20 71.4% 92.7% 0.80

Average 49:15 130 93 71.6% 77 58.8% 53 69.0% 40 31.0% 26 63.2% 71.6% 0.41

Total 1174 841 690 476 364 230

Although the design was meant to ensure a common understanding, the inter-
rater agreement is low (the macro-average of 0.41 is at the boundary between fair
and moderate). We mainly ascribe this to the fact that we did not define a clear
use case, and the notion of relevance may depend on the task at hand and domain
experience. In general, we identified three common types of disagreements: (i)

Summarization of Elicitation Conversations 133

the statement ‘Do you expect the question to be answered with requirements-
relevant information’ was often misread as ‘Does the question include . . . ’; (ii)
whether yes-no answers should be considered relevant; and (iii) if the summary
of a previous answer, made by the analyst, should be considered relevant. The
disagreements were first manually validated by the second author to identify
obvious sloppiness, and those cases were discarded. When this analysis did not
resolve the disagreements, we took an inclusive approach in which a speaker turn
was considered relevant if one of the taggers tagged it as such.

Fig. 3. Illustration of the tagging tool. On the left, the speaker turn including a ques-
tion, together with the adjacent ones, are shown. On the right, the tagger selects
whether and what kind of requirements-relevant information exists.

4.2 RECONSUM Results

To determine the effectiveness of REConSum (its implementation of the extrac-
tive summarization function Summ in Sect. 3.2), NLP summarization task met-
rics could be applied, e.g., coherence, consistency, percentage of text shown [13].
Other metrics such as BLEU and ROUGE assume the existence of a reference
summary, which we do not possess at this stage of our research. In this paper,
we assess REConSum’s ability of filtering, and therefore utilize standard infor-
mation retrieval metrics: precision, recall, F1-score, and accuracy. As a unit of
analysis, we take speaker turns; in other words, we measure (i) if the speaker
turn contains a question, and (ii) if a speaker turn with a question is relevant
and should therefore be retained in the summary.

Question Detection. For the first part of REConSum, we compare the three
variants described in Algorithm 1: POS tagging, dialogue acts, and their com-
bination. Table 4a presents a summary of the results, while the results for each
dataset can be found online. The approach based on a deep learning classifier for
dialogue acts leads to higher precision and higher recall than the approach based
on POS tagging, perhaps thanks to the higher number of question types that it

134 T. Spijkman et al.

recognizes. Combining both approaches increases the number of true positives,
but at the cost of increasing the false positives too. Using the combined approach
reduces the summarization rate, but at the same time it decreases the likeliness
of missing requirements-relevant information.

Table 4. Performance metrics, showing macro-average and standard deviation across
the nine datasets of Table 3. The best results are highlighted in green.

Categorization of Relevant Questions. Once the questions are found in
the transcript, Algorithm 2 determines if they are requirements relevant. The
algorithm includes two approaches for calculating term frequency, either from
the conversation itself, or from a contextual document. These can then be applied
to all three approaches for question detection, leading to six combinations. The
results in Table 4b show that the highest precision is obtained by combining (a)
dialogue act tagging for question identification with (b) TF–IDF using a context
document for relevance detection. The highest recall is obtained through the
Combined algorithm for question detection. The latter result is not surprising,
as Algorithm 2 takes as input the outputs of Algorithm 1, and the combined
approach had by far the highest recall (over 95%, see Table 4a). Based on these
results, we cannot identify a clear winner, as the decision depends on the relevant
metrics for the use case. Precision is more important for a specification task as
enrichment to note-taking, while recall is more important when searching for
missed requirements.

Locating Requirements-Relevant Information in Questions. The results
show that REConSum is able to effectively extract the questions from the con-
versations. In Table 3, circa 63% of these questions were tagged as relevant by
the taggers. The tagging results, however, indicate a higher relevance for all

Summarization of Elicitation Conversations 135

taggable items (questions, plus the following speaker turn) than just the ques-
tions: 69%. Thus, the answers contain more requirements-relevant information
than the questions, thereby indicating their importance for users when explor-
ing a conversation. If we would include those answers in the summary, we would
increase relevance by reducing the summarization rate.

5 Conclusions, Limitations, and Future Work

In this paper, we presented REConSum as a step towards the summarization of
requirements conversation transcripts, building on and extending the knowledge
in the field of Conversational RE [29]. REConSum employs NLP techniques to
extract questions from a transcript and to determine their relevance. This app-
roach was validated against an assembled golden standard, reaching an F1 score
around 65%. While just showing the questions might not contain all the neces-
sary information for a RE practitioner, this is meant to be a starting point for
further exploring parts of a transcribed conversation.

Although the definition of requirements relevance (RQ1) in conversations
is not final, the discussions and creation of a golden standard provides further
knowledge in this domain. The high disagreement across taggers shows that
determining requirements relevance depends on the perspective of the individ-
ual tagger and on the use case at hand: why is the transcript being explored?
Similarly, relevance cannot be determined in a vacuum (a single speaker turn),
and we allowed taggers to read a context that includes the previous and following
speaker turns (both adjacency pairs before and after the question). The survey
design also defines a minimal categorization of data as presented in Table 2 which
is the result of multiple design iterations.

To automate the identification of requirements-relevant information (RQ2),
the best results (see Table 4) are obtained through a combination of dialogue
acts classification and TF–IDF that allows question recognition and to determine
their relevance. REConSum provides these questions as a summary of the entire
transcript that can facilitate exploration of the conversations by third parties or
reviewing by part-taking practitioners.

The answers to RQ1 and RQ2 allow us to address MRQ: REConSum is our
initial answer for the automated identification of requirements-relevant informa-
tion in a requirements conversation.

Threats to Validity. The obtained results should be seen in light of the threats
to validity, which we classify according to Wohlin et al. [37].

Conclusion Validity. The comparison against the golden standard has some limi-
tations, as it was created by one pair of taggers per conversations. This means we
are not only comparing our tool to the golden standard, but also to the human
performance in creating this standard. Additionally, we have used classic infor-
mation retrieval metrics, but we did not employ classic summarization metrics
at this stage, which require possessing a reference summary. Additionally, the

136 T. Spijkman et al.

relevance of the questions and answers were tagged by perceived relevance, but
we did not tag the remaining speaker turns (those that do neither include a ques-
tion or that constitute an answer to a question). It needs to be confirmed which
speaker turns include the highest percentage of requirements-relevant informa-
tion.

Internal Validity. To make the tagging exercise easier for the participants, we
used a non-exhaustive list of relevance categories, which might have impacted
their perception of relevance for the tagged speaker turns. Additionally, while we
utilized generated transcripts, these were post-processed to remove transcription
errors; this is likely to have a positive effect on the findings.

Construct Validity. All the cases used in our validation and theory building
consisted of interviews focused on the creation of one of three information sys-
tems. This homogeneity probably has an impact on the type of information to
be found in the transcripts. Our results are based on the golden standard, but
requirements relevance remains a term that is up to the interpretation and use
case for reviewing the context. This means that the lack of clear boundaries for
requirements relevance has an impact on our findings and conclusions.

External Validity. Our validation and design relied on a set of simulated inter-
views conducted by students. Whether the results generalize to practical settings
can only be determined by using interviews from real-world projects.

Future Works. The research leading to REConSum is part of conversational
RE : “the analysis of requirements elicitation conversations aimed at identify-
ing and extracting requirements-relevant information” [29]. We expect to sup-
port this goal by building RE tools that can reduce the effort for practitioners
to review and explore the conversations for requirements-relevant information.
We first discuss direct improvements for REConSum, followed by more general
research directions concerning conversational RE.

As an additional functionality for REConSum, we experimented with apply-
ing different learning approaches (Machine Learning, Transfer Learning, and
Zero-Shot Learning) to categorize questions similar to our tagging exercise.
While these outputs were not significant due to the limited labeled data, we
expect that extending the golden standard could enable an effective learning
technique to classify data within the categories of requirements relevance. Also,
an investigation of the options for user interaction starting from the outputs of
REConSum is necessary to allow the use of the tool in practice. The interface
shown in Fig. 1 is only an initial idea that shall be further developed.

Beyond REConSum, we can extend the conversational RE field in many
ways. For instance, the generation of domain/data models from conversations
could speed up development drastically especially in the low-code development
domain. The field of conversation analysis offers many avenues for a rich explo-
ration of conversations, e.g., exploiting multi-modal data that includes video

Summarization of Elicitation Conversations 137

footage, screensharing, whiteboard contents, and prototypes. Another open topic
is to extend the analysis beyond single conversations into a more extensive app-
roach that can be utilized throughout a project linking all conversations together
and keeping track of changes in requirements over time.

Acknowledgements. We thank all the participants who acted as taggers. The use of
the recorded and transcribed dataset is made possible thanks to the ethical Science-
Geosciences Ethics Review Board of Utrecht University (case S-20339).

References

1. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.: Automated
demarcation of requirements in textual specifications: a machine learning-based
approach. Empir. Softw. Eng. 25, 5454–5497 (2020)

2. Alvarez, R., Urla, J.: Tell me a good story: using narrative analysis to examine
information requirements interviews during an ERP implementation. ACM SIG-
MIS Database 33(1), 38–52 (2002)

3. Archibald, M.M., Ambagtsheer, R.C., Casey, M.G., Lawless, M.: Using zoom
videoconferencing for qualitative data collection: Perceptions and experiences of
researchers and participants. Int. J. Qual. Methods 18 (2019)

4. Bano, M., Zowghi, D., Ferrari, A., Spoletini, P., Donati, B.: Teaching requirements
elicitation interviews: an empirical study of learning from mistakes. Requir. Eng.
24(3), 259–289 (2019). https://doi.org/10.1007/s00766-019-00313-0

5. Bies, A., et al.: Bracketing guidelines for Treebank II style Penn Treebank project.
University of Pennsylvania, Technical report (1995)

6. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classification of non-
functional requirements. Requir. Eng. 12(2), 103–120 (2007)

7. Dalpiaz, F., Dell’Anna, D., Aydemir, F.B., Çevikol, S.: Requirements classification
with interpretable machine learning and dependency parsing. In: IEEE Interna-
tional Requirements Engineering Conference, pp. 142–152 (2019)

8. Dalpiaz, F., Gieske, P., Sturm, A.: On deriving conceptual models from user
requirements: an empirical study. Inf. Softw. Technol. 131, 106484 (2021)

9. Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A.M.: Effectiveness of
requirements elicitation techniques: empirical results derived from a systematic
review. In: IEEE International Requirements Engineering Conference, pp. 179–188
(2006)

10. Dell’Anna, D., Aydemir, F.B., Dalpiaz, F.: Evaluating classifiers in SE research:
the ECSER pipeline and two replication studies. Empir. Softw. Eng. 28(1), 1–40
(2023)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding (2018), https://arxiv.org/
abs/1810.04805

12. El-Kassas, W.S., Salama, C.R., Rafea, A.A., Mohamed, H.K.: Automatic text sum-
marization: a comprehensive survey. Expert Syst. Appl. 165, 113679 (2021)

13. Fabbri, A.R., Kryściński, W., McCann, B., Xiong, C., Socher, R., Radev, D.: Sum-
meval: re-evaluating summarization evaluation. Trans. Assoc. Comput. Linguist.
9, 391–409 (2021)

14. Ferrari, A., Huichapa, T., Spoletini, P., Novielli, N., Fucci, D., Girardi, D.: Using
voice and biofeedback to predict user engagement during requirements interviews.
arXiv:2104.02410 (2021)

https://doi.org/10.1007/s00766-019-00313-0
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.02410

138 T. Spijkman et al.

15. Ferrari, A., Spoletini, P., Bano, M., Zowghi, D.: SaPeer and ReverseSaPeer: teach-
ing requirements elicitation interviews with role-playing and role reversal. Requir.
Engi. 25(4), 417–438 (2020)

16. Ferrari, A., Spoletini, P., Gnesi, S.: Ambiguity and tacit knowledge in require-
ments elicitation interviews. Requir. Eng. 21(3), 333–355 (2016). https://doi.org/
10.1007/s00766-016-0249-3

17. Galkin, M., Malykh, V.: Wikipedia TF-IDF Dataset release (2020). https://doi.
org/10.5281/zenodo.3631674

18. Hakulinen, A.: Conversation types. In: D’hondt, S., Verschueren, J., Östman, J.O.
(eds.) The Pragmatics of Interaction, pp. 55–65 (2009)

19. Hepburn, A., Bolden, G.B.: The conversation analytic approach to transcription.
In: Stivers, T., Sidnell, J. (eds.) The Handbook of Conversation Analysis, pp. 57–76
(2013)

20. Hutchby, I., Wooffitt, R.: Conversation Analysis: Principles, Practices and Appli-
cations. Wiley, Hoboken (1998)

21. John, J., Godfrey, E.H.: Switchboard-1 release 2 (1993). https://doi.org/10.35111/
sw3h-rw02

22. Kurtanović, Z., Maalej, W.: Automatically classifying functional and non-
functional requirements using supervised machine learning. In: IEEE International
Requirements Engineering Conference, pp. 490–495 (2017)

23. Mondada, L.: The conversation analytic approach to data collection. In: Stivers,
T., Sidnell, J. (eds.) The Handbook of Conversation Analysis, pp. 32–56 (2013)

24. Schegloff, E.A., Sacks, H.: Opening up closings. Semiotica 8(4), 289–327 (1973)
25. Searle, J.R., Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language.

Cambridge University Press, Cambridge (1969)
26. Sidnell, J.: Basic conversation analytic methods. In: Stivers, T., Sidnell, J. (eds.)

The Handbook of Conversation Analysis, pp. 77–99. Wiley Online Library (2013)
27. Spijkman, T., de Bondt, X., Dalpiaz, F., Brinkkemper, S.: Online appendix to Sum-

marization of Elicitation Conversations to Locate Requirements-Relevant Informa-
tion (2023). https://doi.org/10.5281/zenodo.7650324

28. Spijkman, T., Dalpiaz, F., Brinkkemper, S.: Requirements elicitation via fit-gap
analysis: a view through the grounded theory lens. In: International Conference on
Advanced Information Systems Engineering, pp. 363–380 (2021)

29. Spijkman, T., Dalpiaz, F., Brinkkemper, S.: Back to the roots: linking user sto-
ries to requirements elicitation conversations. In: IEEE International Requirements
Engineering Conference (RE@Next! track) (2022)

30. Spoletini, P., Ferrari, A., Bano, M., Zowghi, D., Gnesi, S.: Interview review: an
empirical study on detecting ambiguities in requirements elicitation interviews. In:
International Working Conference on Requirement Engineering: Foundation for
Software Quality, pp. 101–118 (2018)

31. Stivers, T.: Sequence organization. In: Stivers, T., Sidnell, J. (eds.) The Handbook
of Conversation Analysis, pp. 191–209 (2013)

32. Stolcke, A., et al.: Dialogue act modeling for automatic tagging and recognition of
conversational speech. Comput. Linguisti. 26(3), 339–373 (2000)

33. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns.
In: IEEE International Requirements Engineering Conference, pp. 92–104 (2013)

34. Traum, D.R., Hinkelman, E.A.: Conversation acts in task-oriented spoken dialogue.
Comput. Intell. 8(3), 575–599 (1992)

35. Wagner, S., et al.: Status quo in requirements engineering: a theory and a global
family of surveys. ACM Trans. Softw. Eng. Methodol. 28, 1–48 (2019)

https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.1007/s00766-016-0249-3
https://doi.org/10.5281/zenodo.3631674
https://doi.org/10.5281/zenodo.3631674
https://doi.org/10.35111/sw3h-rw02
https://doi.org/10.35111/sw3h-rw02
https://doi.org/10.5281/zenodo.7650324

Summarization of Elicitation Conversations 139

36. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

37. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

38. Zowghi, D., Coulin, C.: Requirements elicitation: a survey of techniques,
approaches, and tools. In: Engineering and Managing Software Requirements, pp.
19–46. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-28244-0 2

https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/3-540-28244-0_2

Ontology-Based Automatic Reasoning and NLP
for Tracing Software Requirements into Models

with the OntoTrace Tool

David Mosquera1(B) , Marcela Ruiz1 , Oscar Pastor2 ,
and Jürgen Spielberger1

1 Zürich University of Applied Sciences, Gertrudstrasse 15, 8400 Winterthur, Switzerland
{mosq,ruiz,spij}@zhaw.ch

2 PROS-VRAIN: Valencian Research Institute for Artificial Intelligence, Universitat Politècnica
de València, València, Spain
opastor@dsic.upv.es

Abstract. Context and motivation. Traceability is an essential part of quality
assurance tasks for software maintainability, validation, and verification. How-
ever, the effort required to create and maintain traces is still high compared to
their benefits. Problem. Some authors have proposed traceability tools to address
this challenge, yet some of those tools require historical traceability data to gen-
erate traces, representing an entry barrier to software development teams that do
not do traceability. Another common requirement of existing traceability tools is
the scope of artefacts to be traced, hindering the adaptability of traceability tools
in practice. Principal ideas. Motivated by the mentioned challenges, in this paper
we propose OntoTraceV2.0: a tool for supporting trace generation of arbitrary
software artefacts without depending on historical traceability data. The archi-
tecture of OntoTraceV2.0 integrates ontology-based automatic reasoning to facil-
itate adaptability for tracing arbitrary artefacts and natural language processing
for discovering traces based on text-based similarity between artefacts. We con-
ducted a quasi-experiment with 36 subjects to validate OntoTraceV2.0 in terms
of efficiency, effectiveness, and satisfaction. Contribution. We found that Onto-
TraceV2.0 positively affects the subjects’ efficiency and satisfaction during trace
generation compared to a manual approach. Although the subjects’ average effec-
tiveness is higher using OntoTraceV2.0, we observe no statistical difference with
the manual trace generation approach. Even though such results are promising,
further replications are needed to avoid certain threats to validity. We conclude the
paper by analysing the experimental results and limitations we found, drawing on
future challenges, and proposing the next research endeavours.

Keywords: Traceability · Ontology · NLP · Automatic reasoning · OntoTrace

1 Introduction

Traceability in software development refers to generating, maintaining, and using traces
between software artefacts [1, 2]. A trace is a triplet of elements composed of a source

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 140–158, 2023.
https://doi.org/10.1007/978-3-031-29786-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_10&domain=pdf
http://orcid.org/0000-0002-0552-7878
http://orcid.org/0000-0002-0592-1779
http://orcid.org/0000-0002-1320-8471
http://orcid.org/0000-0003-2617-3535
https://doi.org/10.1007/978-3-031-29786-1_10

Ontology-Based Automatic Reasoning and NLP 141

artefact, a target artefact, and a trace link [2]. Software artefacts vary depending on
the software development context and can be of different formats such as: textual
requirements, source code, mock-ups, test cases, graphical software models, among
others. Keeping such artefacts traced is essential to quality assurance tasks such as soft-
ware maintainability, validation, and verification [3, 4]. However, in practice, the effort
required to trace artefacts outweighs traceability benefits [5]. Thus, some authors have
proposed novel approaches, especially for generating traces between software artefacts
[5–15]. These proposals have attempted to decrease the effort required for generating
traces between artefacts. Yet, some of them depend on historical traceability data—a.k.a.
training traceability data—[5, 7, 9, 14], are fixed to specific artefact types [8, 10–13],
and lack decision-making support techniques for trace generation [6, 15].

We had previously conceived OntoTrace: a tool for supporting trace generation of
arbitrary software artefacts using ontology-based automatic reasoning [15] (see Onto-
TraceV2.0 research timeline in Fig. 1). In this paper, we evolve OntoTrace into Onto-
TraceV2.0 providing it with a Natural Language Processing (NLP) layer that support
decision-making on generating traces between artefacts. Although OntoTrace supports
trace generation of arbitrary software artefacts, we scope our research to trace soft-
ware requirements—i.e., user stories—into software models—i.e., Existence Depen-
dency Graph (EDG) models. Thus, OntoTrace users can use an automatic reasoner
together with NLP to infer traceability-related information such as: i) which artefacts
are not yet traced; ii) which are the traceable source/target artefacts; and iii) given a spe-
cific artefact, which are the possible recommended traces between it and other artefacts
based on text-based similarity.

We conducted a quasi-experiment with 36 subjects to validate OntoTraceV2.0 in
terms of subjects’ efficiency, effectiveness, and satisfaction in the context of the rapid
software prototyping course at the Zürich University of Applied Sciences (ZHAW).
Experimental results show howOntoTraceV2.0 positively affects the subjects’ efficiency
and satisfaction during trace generation compared to a manual approach. Although the
subjects’ average effectiveness is higher usingOntoTraceV2.0,we observed no statistical
difference with the manual trace generation approach in terms of effectiveness. Even
though such results are promising, we identified some validity threats such as maturity,
low statistical power, and generality threats that requires further replications to validate
our results. Finally, we discuss our conclusions and the subsequent challenges to a
complete technology transference.

Fig. 1. OntoTraceV2.0 research timeline and overview.

The paper is structured as follows: in Sect. 2, we review the related works; in Sect. 3,
we exhibit the problem scope, main definitions, and exemplify how to configure Onto-
Trace for tracing user stories andEDGmodels [16]; in Sect. 4, we present all new features

142 D. Mosquera et al.

included in OntoTraceV2.0; in Sect. 5, we show the OntoTraceV2.0 validation results;
and, finally, in Sect. 6, we discuss conclusions and future work.

2 Related Works

Automating totally or partially the trace generation in software development has gained
researchers’ attention. Thus, they have proposed novel traceability tools. Some authors
propose tools for generating traces between artefacts based on historical traceabil-
ity data—a.k.a. training traceability data—such as: artificial neural networks [5, 14],
historical-similarity-based algorithms [9], andBayes classifiers [7]. Although these tools
are helpful, they depend on extensive and well-labelled training data sets based on his-
torical traceability data. This represents an entry barrier for software development teams
that currently do not trace their artefacts. Other authors propose tools that do not rely
on historical traceability data, such as ontology-based recommendation systems [12,
13], expert systems [8], pattern languages [11], and metamodel-based ontologies [10].
However, these tools are limited to generating traces between specific artefacts. Thus,
software development teams cannot adapt such tools to their software development trace-
ability needs. For instance, some tools [8, 12, 14] limit their source/target artefacts to
text-based artefacts—e.g., source code, standards, and textual requirements. Therefore,
non-textual artefacts such as models, UIs, and mock-ups are beyond their scope. Having
that in mind, in previous work we have proposed OntoTrace as a tool for generating
traces between arbitrary artefacts without the need to rely on historical traceability data
[15]. Nevertheless, like the Capra tool proposed in [6], they both lack decision-making
support for analysts to decide on which traces need to be generated—i.e., both lack
support for recommending which artefacts should be traced.

To address such gaps, we propose to evolve OntoTrace to OntoTraceV2.0: an
ontology-based automatic reasoning NLP (Natural Language Processing) tool for gen-
erating traces between software artefacts. Like its predecessor, OntoTraceV2.0 does not
rely on historical traceability data and is not restricted to a specific set of traceable
artefacts. In addition, we combine automatic reasoning with NLP to support decision-
making on which traces should be generated between artefacts. Thus, OntoTraceV2.0 is
a step forward in improving software trace generation, having such combination as the
main technical novelty.

3 Problem Scope

The goal of this paper is: to analyse the OntoTrace tool for the purpose of supporting
software traceability with respect to effectiveness, efficiency, and satisfaction of Onto-
Trace users from the point of view of the researchers in the context of software trace
generation tasks. To address this goal, we have taken the following decisions:

• The OntoTrace tool proposed in [15] is founded on general traceability definitions
taken from [1, 2, 17], which supports trace generation in any traceability context. We
define traceability context as the set of SOURCE and TARGET software artefacts to
be connected by means of traces. For instance, the traceability context of this paper

Ontology-Based Automatic Reasoning and NLP 143

and the controlled quasi-experiment presented in Sect. 5 is the generation of traces
between User Stories [18] as SOURCE and EDG models—a UML-class-diagram-
like model [16]—as TARGET software artefacts. The reason is that User Stories and
UML models are widely used by software development teams to document software
requirements. Moreover, EDG models are supported by teaching and learning tools
like Merlin, which are good fit for teaching and experimental purposes [16].

• We define traceability activity as any activity involved in the traceability process such
as generating, using, and maintaining traces [2].

• We define OntoTrace user as any software development team role carrying out a
traceability activity using OntoTrace [15].

• The traceability activity that we select for this paper is trace generation. Other
traceability activities are out of this paper’s scope.

Based on these decisions, we propose the following research questions:

RQ1: How to improve OntoTrace to allow for automatic trace recommendations? We
consider different NLP techniques [19–22] to provide trace recommendations between
artefacts and refactor the OntoTrace architecture [15], reflecting all new features. As a
result, we propose OntoTraceV2.0.

RQ2: When the subjects useOntoTraceV2.0, is their effectiveness, efficiency, and satis-
faction in establishing traceability links among User Stories and EDG models affected?
To answer this question, we conduct a quasi-experiment to compare effectiveness, effi-
ciency, and satisfaction of subjects that did software traceability with OntoTraceV2.0
and the traditional way (without OntoTraceV2.0).

3.1 Traceability Context: Tracing User Stories and EDG Models

In this Section we show the application of the method Ontology101 [23] to establish
the traceability context for this paper: Tracing User Stories [18] as SOURCE and EDG
models [16] as TARGET software artefacts. As a result, we create an ontology based on
such traceability context, containing the structure of artefacts and traces. This ontology
is the main input for using OntoTrace since it relies on automatic reasoning based on
the defined ontological structure. We present a summary with the application of each
Ontology101 step, a set of guidelines to specialise eachOntology101 step for establishing
the traceability context, and the outcome of applying each guideline (see Table 1).

Having the strategy selected fromG11, the context-dependent traceability ontology is
ready to be translated into a computational-readable knowledge representation language
as OWL (Ontology Web Language [26]) and then used with OntoTrace.

4 Evolving OntoTrace into OntoTraceV2.01

In previous work, we proposed OntoTrace as an ontology-based automatic reasoning
trace generation tool [15]. In this Section,we addressRQ1presented inSect. 3, improving

1 OntoTraceV2.0 code is available here: https://tinyurl.com/4d45utrf.

https://tinyurl.com/4d45utrf

144 D. Mosquera et al.

Table 1. Establishing traceability context

Ontology101
Step (S)

Guidelines (G) for
establishing traceability
context

Result: traceability context user stories and
EDG

S1: Determine
the domain and
scope of the
ontology

G1. Specify
context-dependent artefacts
that require to be traced

User story parts
EDG model elements

G2. Classify the
context-dependent artefacts
into source and target artefacts

Source: User story parts
Target: EDG model elements

S2: Consider
reusing existing
ontologies

G3. Reuse existing
metamodels, tools, domain
models, syntaxes,
documentation, libraries, and
vocabulary that describe
context-dependent artefacts

We reuse the following ontology and
metamodel:
- Ontology for User Stories [18]
- EDG metamodel [16]

S3: Enumerate
important terms
in the ontology

G4. List terms representing
context-dependent source
artefacts

User story role, user story action, user story
goal, user story object

G5. List terms representing
context-dependent source
artefacts

EDG object, EDG attribute, EDG
dependency, EDG method

G6. Specify
context-dependent trace
properties to link source and
target artefacts

We propose the traceability matrix in
Table 2 based on literature on transforming
user stories into EDG models [24, 25] (EDG
can be transformed into UML and vice versa
[16]). This traceability matrix represents the
context-dependent trace properties based on
researchers’ [24, 25] and authors’
experience

S4: Define the
classes and the
class hierarchy

G7. Use the class hierarchy
for defining the source/target
sub-classes based on the
resulting terms from G4 and
G5

See Fig. 2

(continued)

Ontology-Based Automatic Reasoning and NLP 145

Table 1. (continued)

Ontology101
Step (S)

Guidelines (G) for
establishing traceability
context

Result: traceability context user stories and
EDG

G8. Use the class hierarchy
from G7 for defining the trace
sub-classes based on the
resulting trace properties from
G6. Each sub-class relates to
a traceability link defined as
follows:
---Trace hasSource some
Source AND Trace hasTarget
some Target
Constraint: Define trace
sub-classes until all possible
trace properties resulting from
G6 have been covered with at
least one trace sub-class

S5: Define the
properties of
classes

G9. Define context-dependent
traceability properties with
the following naming: has +
Source/Target + Artefact
Name
Constraint: All target/source
sub-classes must be related to
at least one
traceability-related property

Property hasSourceUserStoryRole,
inheriting from the hasSource property
Property hasTargetEDGObject, inheriting
from the hasTarget property

S6: Define the
facets of the
properties

G10. Define the range and
domain of context-dependent
traceability properties as
follows:
Set the domain as all possible
trace sub-classes from G8 that
have the source/target artefact
as its range
Set the range as the
source/target artefact of the
trace

---hasSourceUserStoryRole property: this
property’s domain is a Trace Between User
Story Role and EDG Object class instance,
and its range is User Story Role class
instances
hasTargetEDGObject property: this
property’s domain is a Trace Between User
Story Role and EDG Object class instance,
and its range is EDG Object class instances

(continued)

146 D. Mosquera et al.

Table 1. (continued)

Ontology101
Step (S)

Guidelines (G) for
establishing traceability
context

Result: traceability context user stories and
EDG

S7: Create
instances

G11. For each artefact, select
one of the following
individual instance creation
strategies:
Manual: Artefacts are
difficult to access
programmatically, such as
physical documentation
Automatic: Artefacts are
contained in accessible
repositories allowing for
programmatic retrieval
operations

Automatic strategy for creating source
artefacts since User Stories are stored
digitally
Automatic strategy for EDG models since
they are digital

Table 2. Traceability matrix in our running example: User story parts vs EDG model elements.

Source artefact EDG: target artefact

Object Attribute Dependency Method

User story role ✓

User story action ✓ ✓

User story object ✓ ✓

User story goal ✓ ✓

✓: Traceability link; EDG: Existence Dependency Graph.

Fig. 2. Excerpt of trace sub-classes, hierarchy, and traceability links of our running example.

Ontology-Based Automatic Reasoning and NLP 147

OntoTrace to allow for automatic trace recommendation. We show which are the new
OntoTraceV2.0 architecture elements in Fig. 3 compared to OntoTrace. Moreover, we
describe the new modules in the following paragraphs.

Fig. 3. OntoTraceV2.0 architecture overview

First, OntoTrace user specifies a context-dependent ontology (see Sect. 3.1) and
creates an OWL file [26] describing it using an external tool such as Protégé. Then, the
OntoTrace user provides this OWL file to OntoTrace to use the following modules:

• Module A. OntoTrace provide information about source and target artefacts using a
set of SPARQL queries. All the information is retrieved using the context-dependent
traceability ontology.

• Module B. OntoTrace uses an automatic reasoner together with the SPARQL query
engine to answer the following traceability related questions: i) which source/target
artefacts are traceable; ii) which are the traces between artefacts; iii) which possible
traces exist between source/target artefacts.

Module A and B allow OntoTrace users to store traces between artefacts based on
automatic reasoning. Nevertheless, OntoTrace cannot recommend which of the possible
source/target artefacts are relevant to be traced. This is problematic, mainly when an
artefact can be traced to many different artefacts, motivating us to evolve OntoTrace
[15] and propose OntoTraceV2.0. Therefore, we create a new web-based user interface
and include the following two modules to OntoTraceV2.0:

148 D. Mosquera et al.

• Module C. We provide OntoTraceV2.0 with an NLP layer for suggesting traces
between artefacts based on their text-based similarity (see Sect. 4.1), addressing the
aforementioned gap.

• Module D. Now, OntoTraceV2.0 is a web-based tool instead of a standalone tool.
OntoTrace users uses a RESTful API to access all OntoTraceV2.0 functionalities.

4.1 Combining NLP and Ontology-Based Automatic Reasoning for Supporting
Trace Generation Between User Stories and EDG Models

OntoTrace [15] have a limitation on not recommending which possible source/target
artefacts are relevant to be traced. In this Section, we use the context-dependent trace-
ability ontology defined in Sect. 3.1 to exemplify this limitation and show how NLP can
solve it.

After having the context-dependent traceability ontology (see Sect. 3.1), OntoTrace
users start populating OntoTrace with user story parts and EDG model elements. These
artefact instances represent the set of all traceable artefacts A. We divide A into two
subsets: user story parts (source artefacts) SA ⊆ A and EDGmodel elements (target arte-
facts) TA ⊆ A. OntoTrace uses ontology-based automatic reasoning to answer traceabil-
ity related questions, creating subsets of SA and TA. Specially, we focus on the following
traceability-related question2: having selected a user story part sa ∈ Sa, which is the
set of possible EDG model elements PTa ⊆ Ta to trace? OntoTrace automatic reasoner
answers this question creating thePTa subset based on the context-dependent trace prop-
erties (see Table 2). Now, the OntoTrace user can select one of the possible EDG model
elements pta ∈ PTa to create a trace with sa. . For instance, the OntoTrace user selects a
User Story Role Secretary and OntoTrace answers based on the context-dependent trace
properties (see Table 2) with the following possible EDG model elements PTa to trace:
EDG Object Aircraft Manager, EDG Object Aircraft, and EDG Object Secretary. Now,
the OntoTrace user can select EDG Object Secretary as pta to create a trace with the
User Story Role Secretary as sa. We graphically show this example in Fig. 4.

Fig. 4. Previous OntoTrace version automatic reasoning result.

2 Notice that this question can also be written as: having selected a EDG model element ta ∈
Ta , which is the set of possible user story parts PSa ⊆ Sa to trace? However, we use the
source-to-target variant instead of target-to-source variant for simplicity.

Ontology-Based Automatic Reasoning and NLP 149

Notice that OntoTrace’s automatic reasoner filtered out all target artefacts that the
OntoTrace user must not trace to a User Story Role, such as EDG Dependencies, Meth-
ods, and Attributes. However, the OntoTrace user still needs to decide which EDG
model element pta from the PTa subset is the correct one to trace. Whether all pos-
sible EDG model elements pta ∈ PTa are equally valid is a problem that limits the
scope of the automatic reasoner for trace generation. To address such a problem, we
provide OntoTraceV2.0 with an NLP layer to recommend which EDG model element
pta is relevant to be traced to a selected user story part sa based on text-based similarity.
OntoTraceV2.0’s NLP layer comprises three sub-layers: extracting artefacts’ text data,
processing extracted text, and calculating the similarity between artefacts. As a result,
OntoTraceV2.0 provide a similarity value with the possible traces between artefacts. We
show how OntoTraceV2.0 transforms ontology-based automatic reasoning output using
the NLP layer in Fig. 5.

Fig. 5. OntoTraceV2.0 NLP layer and sublayers explained.

In the first sub-layer, we extract the textual data from the selected user story part sa
and all possible EDGmodel elements pta ∈ PTa. We gather artefacts’ relevant data from
sa and each pta ∈ PTa using SPARQL [27] queries. Then, we transform the information
retrieved by the SPARQL queries into a textual description as input for the next sub-
layer. In the second sub-layer, we process the textual description resulting from last layer.
We apply text processing techniques [22], such as removing punctuation, lowercasing,
tokenization, stop word removal, and lemmatization. In the third sub-layer, we receive
the processed text and calculate the cosine similarity between the angle of the sa and pta
vectors [19], having as a result a text-based similarity value between 0 to 1. Then, we
provide the possible traces between the selected user story part sa and all possible EDG
model elements pta ∈ PTa with the text-based similarity value. Finally, OntoTraceV2.0
recommend tracing sa to a pta ∈ PTa if the calculated text-based similarity is higher or
equal to a recommendation threshold. We show a detailed example on how this text go
through all three NLP sub-layers in Fig. 6.

So far, we briefly discussed the technical details of each NLP sub-layer. In this
paper, we specially focus on the third sub-layer’s vectorizing techniques [20, 21] and
how such techniques affect the OntoTraceV2.0 recommendation accuracy. To do so,
we test four vectorizing techniques: Count Vectorizer, TFIDF Vectorizer, Doc2Vec,

150 D. Mosquera et al.

Fig. 6. Detailed NLP layer example.

and Universal Sentence Encoder. Count and TFIDF Vectorizers are mathematical-based
techniques for vectorizing text, using word frequency to create a vector representation
[21]. The Doc2Vec and the Universal Sentence Encoder are machine-learning-based
techniques for vectorizing text using word embeddings [20, 21]. To compare them, we
gather and process the text from each sa with their PTa set using the first two NLP
sub-layers. We calculate the cosine similarity between vector representations for each
vectorizing technique—i.e., we calculate cos_sim(sa, pta) for each pta ∈ PTa. Finally,
we calculate the recommendation accuracy to compare the vectorizing techniques. We
define recommendation accuracy based on [28] as:

Recommendation accuracy = Number of successful recommentations

Total number of recommendations
∗ 100% (1)

We calculate the average recommendation accuracy to compare the four vectorizing
techniques and report the results in Table 3.

Table 3. Vectorizing techniques and their recommendation accuracy.

Vectorizing technique Recommendation threshold Recommendation accuracy (AVG)

Count vectorizer 0.9025 71.80%

TFIDF vectorizer 0.9139 75.89%

Doc2Vec 0.9965 20.21%

Universal Sentence Encoder 0.9625 60.37%

We observe that the TFIDF vectorizer has the highest recommendation accuracy in
average among vectorizing techniques. Therefore, we select the TFIDF vectorizer to
implement the third sub-layer vectorizing technique. For the sake of space, we include
a detailed description on how we designed the SPARQL queries, implemented the text
processing techniques, and selected the vectorizing techniques and similarity calcula-
tion method in an annexe repository3. However, evaluating the effect on recommenda-
tion accuracy with different similarity calculation formulas, text processing techniques,
SPARQL queries, and other NLP techniques—e.g., using transformer models—is still
work in progress.

3 https://doi.org/10.5281/zenodo.7589791.

https://doi.org/10.5281/zenodo.7589791

Ontology-Based Automatic Reasoning and NLP 151

5 Evaluating OntoTraceV2.0

We have conducted a quasi-experiment to measure the extent OntoTraceV2.0 affects
trace generation effectiveness, efficiency, and satisfaction. We design and execute this
quasi-experiment based onWohlin et al. [29] andMoody’s [30] Technology Acceptance
Model (TAM), addressing RQ2 presented in Sect. 3. Our quasi-experiment is fixed to
User Stories and EDG models. However, we consider answering RQ2 as the first step
for future experiment replications with other artefacts and as a first step to find general
conclusions.

5.1 Experimental Design

The experimental goal according to theGoal/Question/Metric template [31] is to analyse
the use of OntoTraceV2.0 for the purpose of trace generation between user stories and
EDG models with respect to effectiveness, efficiency, and satisfaction from the point
of view of engineering bachelor students in the context of a bachelor course on rapid
software prototyping (RASOP) at the ZHAW in Switzerland.

Experimental Subjects. The quasi-experiment was conducted with 36 subjects, all of
them engineering students enrolled in theRASOP course. The subjects are part of diverse
engineering programs such as: Information technology (IT; 36.1%), Computer Sciences
(30.6%), Industrial engineering (8.3%), Systems engineering (5.6%), Mechanical engi-
neering (5.6%), Business engineering (5.6%), Aviation (2.8%), Electrical engineering
(2.8%), and Energy and Environmental Engineering (2.8%). More than a half (58.3%)
of the subjects have between 0.5 to 10 years of industry experience (2.8 years average
± 3.1 years std) in field such as software engineering, data mining, mechanics, and
semi-conductor industry, among others. However, only one subject (2.8%) has one year
of previous experience on software traceability. The other subjects (97.2%) have no pre-
vious experience on software traceability. Subjects were informed about data collection,
and they executed the experimental tasks as part of the course graded activities. Never-
theless, we inform them that there are no direct benefits in the grades to let us collect
their data.

Variables. We consider one independent variable: generating traces with and without
OntoTraceV2.0. On the other hand, we consider three independent variables grouped
by effectiveness, efficiency, and satisfaction based on Moody’s evaluation model [30].
For effectiveness, we decide to measure subject’s precision during trace generation. For
efficiency, we plan to measure subject’s number of generated traces per minute. For
satisfaction, we propose to measure three qualitative variables based on a 1-to-5 Likert
scale: Perceived ease of use (PEU), perceived usefulness (PU), and Intention to Use
(ITU).

Hypotheses. We define null hypotheses (represented by a 0 in the subscript) stating that
OntoTraceV2.0 do not affect the trace generation effectiveness, efficiency, and satisfac-
tion. The alternative hypotheses (represented by a 1 in the subscript) suppose there is an
influence. We show our hypotheses in Table 4, alternative hypotheses are omitted.

152 D. Mosquera et al.

Table 4. Null hypothesis (H0) description.

H0 Statement: The use of OntoTraceV2.0 does not affect the subject’s…

H10 …effectiveness when generating traces between user stories and EDG models

H20 …efficiency when generating traces between user stories and EDG models

H30 … PEU when generating traces between user stories and EDG models

H40 … PU when generating traces between user stories and EDG models

H50 … ITU when generating traces between user stories and EDG models

PEU: Perceived Ease of Use; PU: Perceived Usefulness; ITU: Intention to Use

5.2 Procedure and Data Analysis4

We conducted the quasi-experiment following a blocked subject-object study having
one factor with two treatments experimental design [29]. Hence, we propose randomly
dividing subjects into two balanced groups: GR1 andGR2. Both groups received training
on traceability during the RASOP lectures. We design two experimental objects (O1 and
O2) that both GR1 and GR2 will face in two different sessions. Subjects receive a set of
user stories as source artefacts and an EDG as target artefact, having as a task generating
the traces between artefacts.Moreover, source and target artefacts are previously labelled
(see Fig. 7).

Fig. 7. O2 experimental object excerpt. S#: source artefact; T#: target artefact.

Before each session, we introduce the experimental task using an experimental train-
ing object (O0). Data from O0 is not collected nor evaluated since it is just for training
subjects. During the first session, GR1 works on O1 and GR2 works on O2, both groups
without usingOntoTraceV2.0—i.e., using amanual traceability strategy. During the sec-
ond session, GR1 works on O2 and GR2 works on O1, but now using OntoTraceV2.0.

4 To facilitate further replications, all material related to the experimental objects, demographics,
and results can be found at https://doi.org/10.5281/zenodo.7360221.

https://doi.org/10.5281/zenodo.7360221

Ontology-Based Automatic Reasoning and NLP 153

We decide to evaluate OntoTraceV2.0 against manual traceability rather than Onto-
TraceV1.0 since OntoTraceV2.0 contains all features from OntoTraceV1.0, allowing us
to assess not only the new NLP feature but also the ontology-based automatic reasoning
feature. At the end of each session, we ask subjects to provide us with the ending time,
the generated traces, and a satisfaction questionnaire.

Using the previously discussed configuration, quasi-experiment findings are not
entirely dependent on the experimental object since we use two experimental objects.
Moreover, we avoid the between-session experimental object learning effect since sub-
jects work on different experimental objects in each session. Furthermore, session 1 and
session 2 were performed with a one-week time difference, decreasing the effect on
satisfaction variables by the time between sessions. However, we could not prevent a
between-task learning effect—i.e., even if we did not reveal the correct results between
sessions, subjects learn how to perform the traceability task from session 1 and use that
knowledge in session 2—due to time and infrastructure limitations. As a disclaimer,
such a learning effect can affect effectiveness and efficiency metrics, requiring further
replications to validate our results. We deeply discuss this and other threats to valid-
ity in more detail in Sect. 5.3. Finally, all subjects are used in both sessions, avoiding
variability among subjects.

Data Analysis. We analyse the descriptive statistics, comparing means of dependent
variables (see Fig. 8). Moreover, we run a generalised linear model to test the hypothesis
(see Table 5).

Fig. 8. Quasi-experiment results’ distributions, having y-axis as the probability density.

Effectiveness. We observe subject’s effectiveness in terms of precision without Onto-
TraceV2.0 is in average 73.99% ± 15.77% compared to 81.74% ± 15.49% with Onto-
TraceV2.0. This means that subjects identify 7.75% more correct traces with Onto-
TraceV2.0 compared to a manual strategy on average. However, we observe that Onto-
TraceV2.0 has no statistical representative effect into subject’s precision. Similarly with
the interaction between OntoTraceV2.0 and the experimental object. Therefore, we can-
not reject H10. On the other hand, we observe the experimental object has a negative
representative effect into subject’s precision. This could indicate that one experimental
object is more challenging that the other.

154 D. Mosquera et al.

Table 5. Statistical generalized linear model test results.

Independent variables Dependent variables

Precision Efficiency
(Traces/min)

PEU (AVG) PU (AVG) ITU (AVG)

OntoTraceV2.0 0.0165
(0.0539)

0.670***
(0.230)

0.489*
(0.267)

0.649***
(0.231)

0.600*
(0.331)

Experimental Object −0.099*
(0.0513)

0.807***
(0.219)

0.256
(0.255)

0.246
(0.221)

−0.167
(0.316)

OntoTraceV2.0 &
Experimental Object

0.121
(0.0749)

−0.783**
(0.319)

−0.0438
(0.372)

−0.105
(0.322)

0.0569
(0.461)

Standard errors in parentheses; ***: p < 0.01; **: p < 0.05, *: p < 0.1.

Efficiency. We observe subject’s efficiency in terms of trace/min without Onto-
TraceV2.0 is in average 1.44 traces/min ± 0.71 traces/min compared to 1.72 traces/min
± 0.71 traces/min with OntoTraceV2.0. This means that subjects create 0.28 traces/min
(16.8 traces/hour) faster compared to a manual strategy on average. Moreover, we
observe that OntoTraceV2.0 has a positive statistical representative effect into sub-
ject’s efficiency. Similarlywith interaction betweenOntoTraceV2.0 and the experimental
object. Therefore, we reject H20 with a 99% of confidence. As a disclaimer, this result
could be due to between-task learning validity threat—i.e., a maturity threat—as we
previously mentioned. Thus, a double check with future replicas is needed. On the other
hand, we observe the experimental object has a positive representative effect into sub-
ject’s efficiency. This seems to confirm what we identified with effectiveness, where one
experimental object seems to not require as much effort as the other.

Satisfaction. We observe that subject’s satisfaction in terms of PEU, PU, and ITUwith-
out OntoTraceV2.0 is in average 3.64 ± 0.86, 3.27 ± 0.63, 2.75 ± 0.94 respectively.
Furthermore, we observe that subject’s satisfactions in terms of PEU, PU, and ITU
with OntoTraceV2.0 is in average 4.11 ± 0.64, 3.88 ± 0.69, 3.38 ± 0.93 respectively.
This means that subjects perceived a better satisfaction in terms of PEU, PU, and ITU
using OntoTraceV2.0 on average—specifically, OntoTraceV2.0 increase PEU, PU, and
ITU on average 0.47, 0.61, and 0.63 points respectively. Moreover, we observe that
OntoTraceV2.0 has a positive statistical representative effect into PEU, PU, and ITU.
Therefore, we reject H30, H40, and H50 with a 90%, 99%, and 90% of confidence
respectively. On the other hand, we observe that the experimental object nor the interac-
tion between experimental object andOntoTraceV2.0 has statistical representative effect
into subject’s satisfaction in terms of PEU, PU and ITU.

5.3 Threats to Validity

Internal Validity. GR1 and GR2 group subjects could share information about their
experimental objects, materializing a diffusion threat. Due to that, we prepared two
versions of our experimental objects O1.1, O2.1 and O1.2, O2.2. Thus, we minimize the

Ontology-Based Automatic Reasoning and NLP 155

effect of diffusion about experimental objects between sessions since subjects always
face new experimental objects. In terms of maturity, subjects were able to improve their
tracing skills between sessions affecting their efficiency and effectiveness. To minimise
this threat, we do not reveal the results of their performance until the end of the second
session, avoiding subjects learn from the first session results. However, subjects still
could learn how to generate traces between session 1 and session 2—e.g., subjects could
learn how to trace more efficiently even if they do it in a wrong way because they do not
know the correct result. In our quasi-experiment, we did not assess this maturity threat
that could affect especially effectiveness and efficiency. We plan to verify such results
in further experiment replications.

External Validity. We involved students from different engineering bachelor programs
as experimental subjects. This could represent an interaction of selection and treatment
threat where subjects are not representative of the population we want to generalize.
However, all students participating in RASOP lecture are interested on software devel-
opment and software quality assurance tasks such as traceability based on RASOP syl-
labus. Thus, we minimize considering RASOP students as potential population to use
OntoTraceV2.0. Nevertheless, we acknowledge the limits in the generalization of the
experiment results since we did not include other subjects of interest such as traceability
experts. We plan to replicate this quasi-experiment to generalize our results, including
traceability experts and software development teams working in industry.

Construct Validity. Subjects could be afraid of being evaluated affecting their results,
materializing an evaluation apprehension threat.Weminimize this threat letting subjects
know that all data is anonymous, and no benefit/penalization ismade for letting us collect
their data.

Conclusion Validity. Although we conducted a quasi-experiment with 36 subjects, the
sample size is still small. This represents a low statistical power threat. To mitigate this
threat in the future, we plan to replicate this quasi-experiment increasing the sample size.
Moreover, there are external experimental setting threats we could not mitigate that can
affect the experiment results. For instance, RASOP lecture is scheduled from 17:45 to
21:00. During the evening subjects are tired and that can affect their results.

6 Conclusions and Future Work

In this paper, we propose OntoTraceV2.0: an ontology-based automatic reasoning and
NLP-based tool for generating traces between software artefacts. OntoTraceV2.0 is built
on top of previous work by including an NLP layer for supporting decision-making on
generating traces between artefacts—i.e., for recommending traces between artefacts.
Then, OntoTraceV2.0 users can use an automatic reasoner together with NLP to infer
traceability-related information such as: i) which artefacts are not yet traced; ii) which
are the traceable source/target artefacts; and iii) given a specific artefact, which are
the possible recommended traces between it and other artefacts based on text-based
similarity.

156 D. Mosquera et al.

We conducted a quasi-experiment with 36 subjects to analyse OntoTraceV2.0 effect
on effectiveness, efficiency, and satisfaction on trace generation. We observed Onto-
TraceV2.0 positively affects the subjects’ efficiency and satisfaction during trace gener-
ation compared to a manual approach. However, although the subjects’ average effec-
tiveness is higher using OntoTraceV2.0, we observed no statistical difference with the
manual trace generation approach in terms of effectiveness. The lack of significant
effect in terms of effectiveness is a limitation. This indicates we still need to improve
OntoTraceV2.0 trace recommendation techniques. In the future, we will improve trace
recommendations by devising new techniques, combining NLP and machine learning
algorithms. In addition, we identified some threats to validity that can affect our results,
especially in terms of effectiveness and efficiency. We plan to replicate this quasi-
experiment having in mind threats to validity such as maturity, low statistical power,
and generalisation of experimental results to validate our results.

Acknowledgments. This research is fully funded by the ZHAW Institute for Applied Information
Technology (InIT), the Innosuisse Flagship SHIFT project, and the ZHAWSchool of Engineering.
Moreover, we would like to thank all RASOP course students for actively participating on the
quasi-experiment, allowing us to gather all the data we used to build our research.

References

1. Charalampidou, S., Ampatzoglou, A., Karountzos, E., Avgeriou, P.: Empirical studies on
software traceability: a mapping study. J. Softw. Evol. Process 33 (2021)

2. Cleland-Huang, J., Gotel, O., Zisman, A.: Software and Systems Traceability. Springer,
London (2012)

3. Antoniol, G., Canfora, G., de Lucia, A.: Maintaining traceability during object-oriented soft-
ware evolution: a case study. In: IEEE International Conference on Software Maintenance -
1999 (ICSM 1999), pp. 211–219 (1999)

4. Sundaram, S.K.,Hayes, J.H.,Dekhtyar,A.,Holbrook, E.A.:Assessing traceability of software
engineering artifacts. Requir Eng. 15, 313–335 (2010)

5. Lin, J., Liu, Y., Zeng, Q., Jiang, M., Cleland-Huang, J.: Traceability transformed: generating
more accurate links with pre-trained BERT models. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 324–335. IEEE (2021)

6. Maro, S., Steghofer, J.-P.: Capra: a configurable and extendable traceability management tool.
In: 2016 IEEE 24th International Requirements Engineering Conference (RE), pp. 407–408.
IEEE (2016)

7. Nagano, S., Ichikawa, Y., Kobayashi, T.: Recovering traceability links between code and
documentation for enterprise project artifacts. In: 2012 IEEE 36thAnnual Computer Software
and Applications Conference, pp. 11–18. IEEE (2012)

8. Guo, J., Cleland-Huang, J., Berenbach, B.: Foundations for an expert system in domain-
specific traceability. In: 2013 21st IEEE International Requirements Engineering Conference
(RE), pp. 42–51. IEEE (2013)

9. Javed, M.A., UL Muram, F., Zdun, U.: On-Demand automated traceability maintenance and
evolution. In:Capilla,R.,Gallina,B.,Cetina,C. (eds.) ICSR2018.LNCS, vol. 10826, pp. 111–
120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90421-4_7

10. Narayan, N., Bruegge, B., Delater, A., Paech, B.: Enhanced traceability inmodel-based CASE
tools using ontologies and information retrieval. In: 2011 4th International Workshop on
Managing Requirements Knowledge, pp. 24–28. IEEE (2011)

https://doi.org/10.1007/978-3-319-90421-4_7

Ontology-Based Automatic Reasoning and NLP 157

11. Javed, M.A., Stevanetic, S., Zdun, U.: Towards a pattern language for construction and main-
tenance of software architecture traceability links. In: Proceedings of the 21st European
Conference on Pattern Languages of Programs, pp. 1–20. ACM, New York (2016)

12. Huaqiang, D., Hongxing, L., Songyu, X., Yuqing, F.: The research of domain ontology rec-
ommendation method with its applications in requirement traceability. In: 2017 16th Interna-
tional Symposium on Distributed Computing and Applications to Business, Engineering and
Science (DCABES), pp. 158–161. IEEE (2017)

13. Hayashi, S., Yoshikawa, T., Saeki, M.: Sentence-to-code traceability recovery with domain
ontologies. In: 2010 Asia Pacific Software Engineering Conference, pp. 385–394. IEEE
(2010)

14. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability using
deep learning techniques. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pp. 3–14. IEEE (2017)

15. Mosquera, D., Ruiz,M., Pastor, O., Spielberger, J., Fievet, L.: OntoTrace: a tool for supporting
trace generation in software development by using ontology-based automatic reasoning. In:
DeWeerdt, J., Polyvyanyy, A. (eds.) CAiSE 2022, pp. 73–81. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-07481-3_9

16. Snoeck, M.: Enterprise Information Systems Engineering. Springer, Cham (2014)
17. Guo, J., Monaikul, N., Cleland-Huang, J.: Trace links explained: an automated approach

for generating rationales. In: 2015 IEEE 23rd International Requirements Engineering
Conference (RE), pp. 202–207. IEEE (2015)

18. Thamrongchote, C., Vatanawood, W.: Business process ontology for defining user story. In:
2016 IEEE/ACIS15th InternationalConference onComputer and InformationScience (ICIS),
pp. 1–4. IEEE (2016)

19. Li, B., Han, L.: Distance weighted cosine similarity measure for text classification. In: Yin,
H., et al. (eds.) IDEAL 2013, pp. 611–618. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41278-3_74

20. Cer, D., Yang, Y., et al: Universal Sentence Encoder (2018)
21. Singh, L.: Clustering text: a comparison between available text vectorization techniques.

In: Reddy, V.S., Prasad, V.K., Wang, J., Reddy, K.T.V. (eds.) Soft Computing and Signal
Processing. AISC, vol. 1340, pp. 21–27. Springer, Singapore (2022). https://doi.org/10.1007/
978-981-16-1249-7_3

22. Hickman, L., Thapa, S., Tay, L., Cao, M., Srinivasan, P.: Text preprocessing for text mining
in organizational research: review and recommendations. Organ. Res. Methods 25, 114–146
(2022)

23. Noy, N.F., McFuiness, D.L.: Ontology Development 101: A Guide to Creating
Your First Ontology. https://protege.stanford.edu/publications/ontology_development/ontolo
gy101.pdf. Accessed 29 Nov 2021

24. Bragilovski, Maxim, Dalpiaz, Fabiano, Sturm, Arnon: Guided derivation of conceptual mod-
els from user stories: a controlled experiment. In: Gervasi, Vincenzo, Vogelsang, Andreas
(eds.) REFSQ 2022. LNCS, vol. 13216, pp. 131–147. Springer, Cham (2022). https://doi.org/
10.1007/978-3-030-98464-9_11

25. Nasiri, S., Rhazali, Y., Lahmer, M., Chenfour, N.: Towards a generation of class diagram from
user stories in agile methods. Procedia Comput. Sci. 170, 831–837 (2020)

26. Web Ontology Language (OWL). https://www.w3.org/OWL/. Accessed 29 Nov 2021
27. SPARQL query language. https://www.w3.org/2001/sw/wiki/SPARQL. Accessed 29 Nov

2021
28. Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., Kashef, R.: Recommendation systems:

algorithms, challenges, metrics, and business opportunities. Appl. Sci. 10, 7748 (2020)
29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation

in Software Engineering. Springer, Heidelberg (2012)

https://doi.org/10.1007/978-3-031-07481-3_9
https://doi.org/10.1007/978-3-642-41278-3_74
https://doi.org/10.1007/978-981-16-1249-7_3
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://doi.org/10.1007/978-3-030-98464-9_11
https://www.w3.org/OWL/
https://www.w3.org/2001/sw/wiki/SPARQL

158 D. Mosquera et al.

30. Moody, D.L.: The method evaluation model: a theoretical model for validating information
systems design methods. In: ECIS 2003 Proceedings, pp. 79–96 (2003)

31. van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal Question Metric (GQM)
approach. In: Encyclopedia of Software Engineering. Wiley, Hoboken (2002)

Requirements Classification Using
FastText and BETO in Spanish

Documents

Maŕıa-Isabel Limaylla-Lunarejo1 , Nelly Condori-Fernandez2,3(B) ,
and Miguel R. Luaces1

1 Fac. Informática, Database Lab., Universidade da Coruña, CITIC, A Coruña, Spain
{maria.limaylla,miguel.luaces}@udc.es

2 CITIUS, Universidad de Santiago de Compostela, Santiago, Spain
n.condori.fernandez@usc.es

3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
n.condori-fernandez@vu.nl

Abstract. Context and motivation : Machine Learning (ML) algo-
rithms and Natural Language Processing (NLP) techniques have effec-
tively supported the automatic software requirements classification. The
emergence of pre-trained language models, like BERT, provides promis-
ing results in several downstream NLP tasks, such as text classification.
Question/problem : Most ML/DL approaches on requirements classifi-
cation show a lack of analysis for requirements written in the Spanish
language. Moreover, there has not been much research on pre-trained
language models, like fastText and BETO (BERT for the Spanish lan-
guage), neither in the validation of the generalization of the models.
Principal ideas/results: We aim to investigate the classification per-
formance and generalization of fastText and BETO classifiers in compar-
ison with other ML/DL algorithms. The findings show that Shallow ML
algorithms outperformed fastText and BETO when training and testing
in the same dataset, but BETO outperformed other classifiers on pre-
diction performance in a dataset with different origins. Contribution :
Our evaluation provides a quantitative analysis of the classification per-
formance of fastTest and BETO in comparison with ML/DL algorithms,
the external validity of trained models on another Spanish dataset, and
the translation of the PROMISE NFR dataset in Spanish.

Keywords: Spanish requirements · Automatic classification
requirements · fastText · BETO

1 Introduction

Requirements specifications are significant activities that contribute to the suc-
cess of a software project [16]. Manual classification of requirements is a complex
and time-consuming task due to a large number of requirements, the unavail-
ability of experts, or the lack of specification documents [3]. This complexity can
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 159–176, 2023.
https://doi.org/10.1007/978-3-031-29786-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_11&domain=pdf
http://orcid.org/0000-0002-9619-924X
http://orcid.org/0000-0002-1044-3871
http://orcid.org/0000-0003-0549-2000
https://doi.org/10.1007/978-3-031-29786-1_11

160 M.-I. Limaylla-Lunarejo et al.

be reduced using automatic text classification techniques, whose application has
increased rapidly in recent years due to the emergence of ML algorithms [19]
and NLP techniques [46]. However, it is the recent expansion of the Deep Neural
Networks and the introduction of the Transfer Learning concept that has allowed
the creation of pre-trained models, i.e. models with a pre-training phase to cap-
ture knowledge from several tasks that can be used later for target task with
limited data [13]. Pre-trained language models, pre-trained models for NLP, have
become beneficial for downstream NLP tasks, e.g. question answering, sentiment
analysis, and summarization [31].

Several studies have used and analyzed various ML techniques for classifying
software requirements. For instance, Abad et al. [1] proposed a pre-processing
approach for improving the performance of some existing ML algorithms. Kur-
tanovic and Maalej [22] investigated how accurately they can automatically clas-
sify requirements employing lexical and syntactical features, and how to han-
dle the imbalanced classes employing sampling strategies. fastText and BERT,
pre-trained language models, have been used also in requirements classifica-
tion [15,23,39], with optimistic results. Despite this interest in the use of ML
techniques for classifying requirements, there is still a lack of analysis for the
requirements written in Spanish. Spanish is currently the second native lan-
guage of the world by the number of speakers, the second language by published
scientific documents, and the third language by Internet usage after English and
Chinese [17]. In the literature, we have found scarce research exploiting require-
ments written in Spanish. For example, Apaza et al., [4] propose a hybrid model
for requirements elicitation, and De Arriba et al., [6] created a Spanish Twit-
ter dataset for applying sentiment analysis). Moreover, standards like ISO/IEC
25010 are also available in Spanish. These initiatives suggest the increasing
importance of the Spanish language in RE.

In this paper, we investigate the performance and generalization of two pre-
trained language models, fastText and BETO, in comparison with ML and Deep
Learning (DL) algorithms for classifying Spanish requirements. We also analyze
the impact of the use of fastText and BETO embeddings in combination with
the Convolutional Neural Networks (CNN) algorithm. Two Spanish datasets
were used in the experiments: first, the PROMISE NFR dataset [38] translated
into Spanish, and second, a Spanish requirements dataset presented in [27]. We
used this last dataset to confirm the external validity of the models trained on
translated PROMISE NFR. The main contributions of this paper are:

– A quantitative analysis of performance metrics to compare the fastText and
BETO classifiers with ML/DL algorithms for requirements classification.

– Analyzing the external validity of trained models with a translated version of
PROMISE NFR on another Spanish dataset.

– The translation of the PROMISE NFR dataset in Spanish.
– The use of fastText and BETO embeddings for the CNN algorithm.

The paper has been organized in the following way. Section 2 presents the
related works on automatic requirements classification. Section 3 presents the
research questions and the corresponding methodology used in this research.

Requirements Classification Using FastText and BETO 161

Section 4 reports the experiments carried out and their results. Section 5 dis-
cusses the results from the previous section. The most relevant threats to validity
are presented in Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Related Work

Previous studies have described the use of ML algorithms to classify require-
ments. Many ML algorithms have been used for the classification of functional
and non-functional requirements (FR/NFR) [12,15,22]. Table 1 shows the result
of a review that we have performed of several studies related to FR/NFR clas-
sification. We found that some studies reported the use of the Shallow ML algo-
rithms1, like Naive Bayes (NB), Decision Tree (DT), and Logistic Regression
(LR); and the use of DL algorithms. Dias and Cordeiro (2020) [12] present a
comparison to determine the best combination of some Shallow ML algorithms
with text vectorization techniques like Bag of Words (BoW), Chi-Squared (χ2)),
and Term Frequency and Inverse Document Frequency (TF-IDF), to classify
requirements. For FR/NFR classification, the combination of TF-IDF and LR
gave the best results. Support Vector Machine (SVM) gets an f1-score of 0.93
and 0.92 for FR/NFR classification in [22]. A decision tree algorithm was used
for FR/NFR classification in [1], with a processed dataset (i.e. using Part of
Speech and Regular Expressions for identifying features instead of using of text
vectorization). A comparison between the Random Forest algorithm and the
gradient boosting algorithm was performed in [24].

Algorithms based on Neural-networks also have been used recently in the
Requirements Engineering (RE) process. Some of them are Recurrent Neu-
ral Networks (RNN), CNN, and pre-trained models, e.g. Transformers. CNN
achieves an f1-score of 0.77 [30] for FR/NFR classification. Hey et al. (2020) [15]
introduce NoRBERT, a language model based on Transformers, which fine-tunes
BERT (a pre-trained model used for transfer learning). NoRBERT achieves an
f1-score of 0.90 and 0.93 for FR/NFR classification. Tiun et al.(2020) investigate
the performance using a complex neural classifier, finding an f1-score value of
0.928 using fastText [39]. The DBGAT model, a combination of BERT and graph
attention network, was presented in [23]. In comparison with several algorithms,
DBGAT achieved f1-scores of up to 0.91. A BiGru model obtained an f1-score
of 0.94 in [2]. Finally, an ensemble of some DL algorithms was presented in [32].

In this review, we found that there is a lack of automatic classification
and labeled datasets in other languages different from English. Even though
some studies have presented methods to generate classification models trained
in English for use in a target language, (e.g. Cross-Language Text Classifica-
tion [45]), some studies show that models trained and tested in native language
outperform better in text classifications [5,44]. However, no relevant research on
the automatic F/NF classification of requirements written in Spanish has been
found. Another finding is that considering pre-trained models are still new, their
1 defined by [18]: The Shallow ML contains simple artificial neural networks and other

ML algorithms such as Support Vector Machine, Logistic Regression.

162 M.-I. Limaylla-Lunarejo et al.

Table 1. Summary of studies related to FR/NFR classification

Ref. Algorithms D. NLP techniques Best results

[12] SVM, KNN, MNB, LR B BoW/TF-IDF χ2) LR with TF-IDF achieve an f1-score of 0.91

[1] C4.5 DT (J48 in Weka) A POS and entity tagging Processed dataset: average precision of 0.95
and recall of 0.94

[22] SVM A Use of lexical features SVM achieve an f1-score of 0.93 (FR) and
0.92 (NFR)

[32] SVM, KNN B BoW SVM achieve an f1-score of 0.90 and KNN
an f1-score of 0.82

[24] Random Forest,
Gradient Boosting

C – RF achieves an accuracy of 0.826

[30] CNN A Word Embedding CNN achive an average f1-score of 0.77,
precision 0.81 and recall 0.785 for all classes
(12)

[15] NoRBERT (Transfer
Learning)

A BERT (Transformers) BERT achive an f1-score of 0.90 (FR) and
0.93 (NFR)

[33] Ensemble DL (LSTM,
BiLSTM, GRU, and
CNN)

A Word Embedding CNN achieves an f1-score of 0.93. The
ensemble model achieves an f1-score of 0.96
per class as a weight ensemble, and 0.94 as
mean ensemble

[39] NB, LG, SVM, CNN,
fastText

A Doc2Vec and Word2Vec fastText achieves an f1-score of 0.928

[23] BERT and GAT A, C – DBGAT achieve an f1-score of 0.92 (FR)
and 0.96 (NFR)

[2] BiGRU A Word Embedding BiGRU with word model achieve an f1-score
of 0.94

Legend: Ref: Reference, D: Datasets, A: PROMISE, B: PROMISE exp [26], C: Others.

use is increasing in RE due to their promising results. Moreover, we found that
most of the studies use the PROMISE NFR dataset, or a newer version, for train-
ing and testing, which does not allow us to determine the level of generalization
that these approaches have.

3 Research Design

This section explains the research design used in this work. The goal of this paper
is to compare the classification performance and generalization of fastText and
BETO models with conventional algorithms using two Spanish datasets.

3.1 Research Questions and Metrics

– RQ1: How do the fastText and BETO classifiers with other ML/DL algo-
rithms compare in performance using the PROMISE NFR dataset translated
into Spanish?

– RQ2: How does the use of fastText and BETO embeddings in combination
with the CNN algorithm affect the classification results?

– RQ3: To which extent the performance of our classification models trained
with a Spanish version of PROMISE NFR differ from those trained with the
original PROMISE NFR dataset?

Requirements Classification Using FastText and BETO 163

– RQ4: Is the classification performance of the models trained using the trans-
lated PROMISE NFR preserved when tested on another dataset?

From our research questions (RQs), we identified the classification perfor-
mance as our dependent variable and the requirements in the datasets as the
independent variable. The most commonly used performance metrics for classi-
fication problems are accuracy (A), precision (P), recall (R), and f1-score (F1).

3.2 Datasets

Datasets are an essential component of any ML experiment. In our research, we
used two datasets: the PROMISE NFR dataset translated into Spanish, and a
Spanish requirements dataset (called the second dataset).

PROMISE [38] is a repository used in most requirements classification
research. It has 84 datasets, and the one used for requirement classification is
NFR, with 625 requirement sentences, 255 requirements identified as functional
and 370 as non-functional. For this research, we downloaded the PROMISE NFR
dataset from [8] and translated it into Spanish. We decided to perform a trans-
lation of this dataset for two main reasons. First, this dataset has been used
as a benchmark by many classification approaches. And second, even if there
is a certain imbalance of sub-classes at the level of NFR, the classes are better
balanced only considering a binary classification (FR/NFR). The translation of
the PROMISE NFR dataset into Spanish was performed with the help of the
Google Translate tool2, a state of art machine translation software, through the
Python library deep-translator3. Google Translate was chosen as a translation
tool because it is free, one of the most popular, and is more accurate when both
languages are similar [43]. Then the translation was reviewed, line by line, by
the first author, performing some adjustments. In this translation process, the
appearance of the English language in some requirements was changed to the
Spanish language. However, the proper names and acronyms were preserved.
For example, “MDI form” was translated as “Formulario MDI”, and “Dr Susan
Poslusny” as “La Dra. Susan Poslusny”. Punctuation was also added to some
requirements where it was missing. Finally, the labels were preserved, like some
names and versions of some browsers, identified as old (e.g. “Internet Explorer
5”). Of the 625 records, one was removed due to duplication, resulting in 254
functional requirements and 370 non-functional. The translated dataset and the
code used in this research are published in Zenodo4.

The second dataset is the one presented in [27], and consists of 389 require-
ments, collected from final degree projects from the University of A Coruña,
and has 300 requirements labeled as functional and 89 requirements labeled as
non-functional.

2 https://translate.google.es/.
3 https://github.com/prataffel/deep translator.
4 https://doi.org/10.5281/zenodo.7311148.

https://translate.google.es/
https://github.com/prataffel/deep_translator
https://doi.org/10.5281/zenodo.7311148

164 M.-I. Limaylla-Lunarejo et al.

3.3 fastText and BETO Models

The pre-trained language models have presented a promising performance in the
Text Classification domain. The BERT model [11], provided by Google, is a pre-
trained model and one of the state-of-art NLP tasks. It has been previously used
for requirements classification (NoRBERT [15,36]) with a good classification
performance and generalization. We selected BETO [7], a BERT-based model, to
take advantage that it was pre-trained on a big Spanish corpus (i.e., Wikipedia,
Wikinews, ParaCrawl, EUBookshop, and OpenSubtitles) and in several NLP
tasks. Moreover, BETO is one of the oldest monolingual models and therefore
most used. BETO has been utilized in several Spanish text classifications (e.g., in
the classification of radiological reports [41] and for detecting anorexia in social
media [29]), in sentiment analysis [6,10] as a support for several RE tasks such as
requirements elicitation or prioritization, and recently for Spanish requirements
classification [27]. Two models (cased and uncased) of BETO are available. Since
the requirements to be analyzed are written in formal language, case model5 was
used for this analysis.

fastText [20] is an open-source library developed by Facebook Research for
text classification and word embedding. fasText has been successfully used in
various text classification tasks. Recently, it has been also applied in FR/NFR
classification [39]. Umer et al. [42] reported good results with the combination of
fastText and CNN on the automatic text classification process. fastText has the
advantage of handling out-of-vocabulary words through the use of n-gram char-
acters. It also allows the training of a supervised classifier with labeled data and
provides automatic hyperparameter optimization. Besides that, fastText pro-
vides pre-trained word embedding libraries for 157 languages, including Spanish.
The pre-trained model for Spanish used in this paper is cc.es.300.bin6, trained
using CBOW with dimension 300 and character n-grams of length 5.

3.4 Research Method

In order to answer our research questions, two different experiments were per-
formed. In the following, we explain the two experiments conducted: In order to
answer our two research questions, two different experiments were performed. In
the following, we explain the two experiments conducted:

Experiment 1. We used a similar procedure to the one proposed by Dalal and
Zaveri (2011) [9]. The procedure consists of four steps: a) document pre-processing,
b) feature extraction, c) ML selection, and d) training and testing the classifier.
As a first step, a pre-processing of the requirements was performed. For text man-
agement, some Natural Language Processing (NLP) techniques were used. A tok-
enization task, a stopword removal, and a stemming task were carried out for each
requirement, only for the Shallow ML algorithms. The NLTK library7 was used

5 https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased.
6 https://fasttext.cc/docs/en/crawl-vectors.html.
7 https://www.nltk.org/.

https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
https://fasttext.cc/docs/en/crawl-vectors.html
https://www.nltk.org/

Requirements Classification Using FastText and BETO 165

for these three tasks. The second step is feature extraction, which was used to pro-
cess the text on quantities and frequencies. Two groups of techniques were imple-
mented: frequency-based and embedding-based.The frequency-based one includes
the BoW and TF-IDF techniques. The scikit-learn library was used for text vector-
ization (i.e., the CountVectorizer tool for BoW and TfidfVectorizer for TF-IDF).
Both techniques were tested with different values of n-grams: Unigram, Bigram,
and Trigram, for every Shallow ML algorithm. The embedding-based one includes
the fastText and BETO embeddings, transforming words into their corresponding
word embeddings, using with the CNN algorithm. Regarding the third step, we
selected four Shallow ML algorithms: Naive Bayes (NB), Gaussian Naive Bayes
(GNB), Logistic Regression (LR), Support Vector Machine (SVM), and three DL
algorithms: CNN, BETO, and fastText. The CNN architecture of our model is
based on [21], consisting of a Word embedding Layer as an input layer, a One-
dimensional Convolutional Layer, a Dropout Layer, a Polling Layer, a Dense Layer
with a ReLU action function, and a Dense Layer with a sigmoid activation function
as an output layer. The Transformer library8 was used to obtain the BETO Tok-
enizer and the BETO pre-trained Model. We used (i) an architecture of four lay-
ers: an Input Layer, a BERT Encoder Layer, a Dropout Layer, and a Dense Layer
for classification; and (ii) a set of hyperparameters. The library fastText9 allows
the training of a supervised classifier and provides an automatic hyperparameter
optimization.

Finally, as a last step, the classifiers were trained and tested. This experi-
ment was performed with the translated PROMISE NFR dataset, using only
the binary classification (FR/NFR). We used the default hyperparameters for
the Shallow ML algorithms, but use a set of several combinations for the DL
algorithms (epochs, dropout, learning rate). Google Colaboratory10, a platform
for programming and executing Python and with free access for GPUs, was used
to train BETO, due to the necessity of major capacity. A GPU with 12.68 GB of
RAM was used. fastText was also trained in Colaboratory, even not needing the
GPU, but for the facility in installation. The other algorithms were performed on
a laptop computer with Intel(R) Core(TM) i5-1135G7 with 2.40 GHz and 8 GB
of RAM. We saved the models (i.e. the outputs of the ML algorithms run on
datasets) for later use. We calculated an average accuracy, precision, recall, and
f1-score for each class (FR and NFR) using 10-fold cross-validation to evaluate
the models’ performance.

Experiment 2. In the second experiment, the models with the best f1-score
values for each algorithm on experiment 1 were selected and used for testing on
the second dataset. This provided a new set of metric values to evaluate whether
these models can be generalized. To ensure the performance comparison among
ML/DL models has statistical significance, we conducted a multiple hypotheses
testing [34], performing first a Cochran’s Q test (omnibus test) and later a
McNemar test statistics (post hoc tests). We considered a significance level (α)

8 https://github.com/huggingface/transformers.
9 https://fasttext.cc/.

10 https://colab.research.google.com/.

https://github.com/huggingface/transformers
https://fasttext.cc/
https://colab.research.google.com/

166 M.-I. Limaylla-Lunarejo et al.

of 0.05 for Cochran’s Q test and applied a Bonferroni’s correction for the post
hoc test. We used the library MLxtend that implements both tests in Python.

4 Experiments and Results

4.1 FR/NFR Classification Using PROMISE NFR Dataset
(RQ1/RQ2)

Our analysis focuses on a comparison of fastText and BETO classifiers with
a set of Shallow ML algorithms (i.e. NB, GNB, LR, and SVM) and one DL
algorithm (CNN) to validate the classification performance in functional (F)
and non-functional (NF) requirements. Regarding the Shallow ML algorithms
in combination with the two text vectorization techniques (BoW, TF-IDF) and
n-gram, 24 metrics set were obtained. All classification performance metrics are
published in Zenodo11 and the highest values for each algorithm are presented
in Table 2 Table 3 shows the same results for the CNN, fastText, and BETO
classifiers, and CNN in combination with fastText and BETO embedding.

When analyzing the results we found that NB with BoW, LR with BoW,
and SVM with TF-IDF combinations gave the highest f1-score for the non-
functional classification (0.93), and the combination of NB with BoW achieved
a better f1-score value for functional classification (0.9). Regarding the use of
n-gram with the frequency-based text vectorization, almost all models obtained
the best f1-score values using Bigram over Unigram and Trigram, except the
NB algorithm that improves using Trigram. The use of n-gram with the NB
algorithm has reported an increase in the classification accuracy for text classi-
fication in other domains [40]. The use of fastText embeddings with the CNN
algorithms outperforms the other DL algorithms with an f1-score of 0.87 for
functional classifications and 0.92 for non-functional classification, followed by
the fastTest classifier with a slight difference. The BETO classifier and the CNN
with BETO were outperformed by the fastText classifier and the Shallow ML
algorithms. In terms of time processing in training, the Shallow ML algorithms
took less than 2 s for each one, the lowest time for all algorithms, but they need
a longer pre-processing step. The CNN and the BETO algorithms took approx.
2 and 35 min respectively, but considering the combination of several hyperpa-
rameter values that were tested, the time was greater. The time processing of
fastText to perform the automatic hyperparameters optimization was approx.
7 min.

Table 4 shows the hyperparameters that provided the best results in perfor-
mance for the DL algorithms, after performing several tests with various combi-
nations. CNN algorithm reduces its number of epochs by combining with fast-
Text embedding but increases with BETO embedding. These values suggest that
classification models based on Shallow ML algorithms have a good capacity for
classifying Spanish requirements (especially the non-functional label). However,
it is also necessary to validate whether these models can be generalized.

11 https://doi.org/10.5281/zenodo.7602116.

https://doi.org/10.5281/zenodo.7602116

Requirements Classification Using FastText and BETO 167

Table 2. Results of Shallow ML algorithms in combination with text vectorization
techniques for FR/NFR classification using translated PROMISE NFR dataset (RQ1)

10-fold

NB

BoW

Trigram

GNB

BoW

Bigram

GNB

TFIDF

Bigram

LR

BoW

Bigram

LG

TFIDF

Bigram

SVM

BoW

Bigram

SVM

TFIDF

Bigram

F NF F NF F NF F NF F NF F NF F NF

A 0.92 0.90 0.89 0.91 0.88 0.89 0.91

P 0.90 0.93 0.87 0.93 0.86 0.92 0.90 0.92 0.94 0.86 0.86 0.90 0.91 0.91

R 0.91 0.92 0.91 0.90 0.89 0.90 0.88 0.94 0.77 0.97 0.86 0.91 0.87 0.94

F1 0.90 0.93 0.88 0.91 0.87 0.91 0.89 0.93 0.84 0.91 0.85 0.91 0.89 0.93

Table 3. Results of DL algorithms for FR/NFR classification using translated
PROMISE NFR dataset (RQ1/RQ2)

10-fold

CNN+fastText CNN+BETO CNN fastText BETO

F NF F NF F NF F NF F NF

A 0.90 0.83 0.88 0.9 0.86

P 0.90 0.91 0.81 0.85 0.88 0.88 0.89 0.90 0.84 0.89

R 0.86 0.93 0.78 0.87 0.82 0.92 0.85 0.93 0.80 0.88

F1 0.87 0.92 0.79 0.86 0.85 0.90 0.87 0.91 0.81 0.89

4.2 Classification Performance Comparison Between Models
Trained in Translated PROMISE and Original PROMISE
(RQ3)

To answer RQ3, we compared the results of our first experiment with other
empirical studies that used PROMISE NFR in its original language (English).
Seven studies from the list shown in Table 1 were chosen because they used the
same algorithms and a similar dataset, and most of them reported results of
well-known performance metrics. As our comparison was carried out in terms
of the macro f1-score metric, we contacted the authors of two studies [12,32]
to clarify how the f1-score metric presented in their works had been calculated.
Other studies reported the f1-score metric, and we calculated and obtained the
corresponding values from other performance measures for those that did not
report it. Table 5 presents the macro f1-score values and the difference between
the results of the studies compared with our results. The column “Own” means
the results of our experiment.

We found slight differences between our results and other studies concerning
Shallow ML algorithms. Regarding the DL algorithms, the DL ensemble model
proposed by [33] obtained an f1-score value of 0.94, a higher value for our CNN
models (CNN and CNN+fastText). We compared the architecture of the CNN
model with ours, finding a main difference in the use of two dropout layers, one

168 M.-I. Limaylla-Lunarejo et al.

before the convolutional layer and the other before the last dense layer; while in
our model only one dropout layer after the convolutional layer. Finally, fastText
[39] and NoRBERT [15] (developed with some custom code) get better results
for FR/NFR classification than our models.

Table 4. Best hyperparameters for DL algorithms

Dropout rate Feature maps Optimizer Learning rate Epochs

CNN+fastText 0.75 100 Adam 0.01 10

CNN+BETO 0.75 100 Adam 0.001 300

CNN 0.75 100 Adam 0.001 20

BETO 0.2 – Adam 1e−05 15

fastText – – – 0.101 100

Table 5. Metrics comparison between previous studies

Reference Dataset Algorithm Macro F1 Own Difference Own** Dif**

[12] B NB 0.91 0.92 −0.01

[12] B LR 0.91 0.91 0

[12] B SVM 0.91 0.91 0

[22] A SVM 0.93 0.91 0.02

[32] B SVM 0.90 0.91 −0.01

[30] A CNN 0.77 0.89 −0.12 0.90 −0.13

[33] A CNN 0.93 0.89 0.06 0.90 0.03

[33]* A CNN 0.94 0.89 0.07 0.90 0.04

[39] A fastText 0.92 0.89 0.03

[15] A BERT 0.92 0.85 0.07

Legend: A: PROMISE (English), B: PROMISE exp (English), *ensemble
model, **CNN+fastText.

4.3 Testing Trained Models on the Second Dataset (RQ4)

Models Performance. We tested the trained models derived from the first
experiment on the second dataset. The results are shown in Table 6 for Shallow
ML algorithms and Table 7 for DL algorithms. Contrary to the results obtained
in the previous experiment, the BETO model gave the best results, with an f1-
score of 0.84 for functional and 0.65 for non-functional classification, followed
by the CNN with fastText model, with an f1-score of 0.77 and 0.51. In general,
we found that the values for accuracy and the f1-score were lower than those
obtained in experiment 1. It can be seen from the data in both Tables that the
precision values for the functional class are above 0.85 in most of the models,
but with a value below 0.51 for the non-functional class. This result indicates a
problem in the prediction of NFR since less than 50% of the requirements that
the models predict as non-functional are really non-functional. An analysis of
several cases containing a false value of the non-functional class was performed
to understand and identify the possible causes of these misclassifications.

Requirements Classification Using FastText and BETO 169

The use of some specific technical words in FR could lead to confusion for
the models. The word “servidor” (“server” in English) is a word normally used
in NFR, such as server availability, server failure, etc. In the PROMISE NFR
dataset, 15 requirements mention this word and they are all non-functional. But
in the second dataset, one of the projects includes some requirements (considered
functional by the author) that contain also the word “server” with other technical
words (API, PC), which are incorrectly predicted as non-functional. Another
example is the word “autenticar” (“authenticate” in English). Ten requirements
in the second dataset contain that word (or similar) and are labeled as functional,
but the models classify them as non-functional. Other examples are “base de
datos” and “archivo” (“database” and “file” in English, respectively). Another
cause could be the lack of detail in the second dataset for NFR, in comparison
with the PROMISE NFR dataset. In a previous analysis of this dataset [27],
some ambiguity in the requirements specification was identified as another cause
for misclassifications of the NFRs.

Table 6. Results of testing the Shallow ML algorithms of experiment 1 on the second
dataset (RQ4)

NB + BoW
Trigram
Model 1

GNB+BoW
Bigram
Model 2

GNB+ TF-IDF
Bigram Model 3

LR+BoW
Bigram
Model 4

LR+ TF-IDF
Bigram
Model 5

SVM+BoW
Bigram
Model 6

SVM+ TF-IDF
Bigram Model 7

F NF F NF F NF F NF F NF F NF F NF

A 0.64 0.65 0.58 0.66 0.46 0.64 0.64

P 0.93 0.37 0.85 0.35 0.83 0.30 0.92 0.39 0.98 0.30 0.89 0.36 0.93 0.38

R 0.58 0.85 0.66 0.61 0.57 0.62 0.61 0.83 0.31 0.98 0.60 0.75 0.58 0.85

F1 0.71 0.52 0.74 0.44 0.68 0.40 0.73 0.53 0.47 0.45 0.72 0.49 0.71 0.52

Table 7. Results of testing the DL algorithms of experiment 1 on the second dataset
(RQ4)

CNN
Model 8

BETO
Model 9

fastText
Model 10

CNN+fastText
Model 11

CNN+BETO
Model 12

F NF F NF F NF F NF F NF

A 0.61 0.78 0.61 0.68 0.60

P 0.76 0.20 0.97 0.51 0.96 0.36 0.89 0.40 0.93 0.35

R 0.72 0.24 0.74 0.91 0.52 0.92 0.67 0.73 0.53 0.87

F1 0.74 0.22 0.84 0.65 0.68 0.52 0.77 0.51 0.67 0.50

Models Comparison. We performed Cochran’s Q and McNemar’s test statis-
tics to ensure the performance metrics comparison has statistical significance,
testing the null hypothesis (all the model performance are similar), and the alter-
native hypothesis (all the model performance has significance difference). We
combined some models from Table 6 and Table 7 to generate interesting groups
for testing. The Cochran’s Q test statistics for model groups are shown in Table 8.

170 M.-I. Limaylla-Lunarejo et al.

These results show that there is a statistical significance in the difference between
all the models’ performance, between the performance of the models based on
Shallow ML algorithms, and between the performance of the models based on
DL algorithms.

We performed some pair-wise McNemar’s tests on the models based on DL
algorithms, shown in Table 9. We calculated a significance level of 0.001 using the
Bonferroni alpha adjustment: considering k = 10, then the new value is 0.05/[k(k-
1)/2] = 0.05/[10(9)/2] = 0.001. The comparison of BETO with each of the other
DL models demonstrated there are significant differences in the performance
between BETO and these models. However, others pair-wise of CNN, fastText,
CNN with fastText, and CNN with BETO obtained a p-value greater than 0.001,
showing that these models did not show significant differences among them.

Table 8. Cochran’s q test statistics

Models groups Q value P value

All models shown in Table 6 (Models 1–12) 122.677 <0.05

Models based on Shallow ML algorithms (Models 1–7) 78.935 <0.05

Models based on DL algorithms (Models 8–12) 42.559 <0.05

Table 9. McNemar’s test statistics

Models pairs χ2 value P value

BETO and fastText 34.018 <0.001

BETO and CNN 23.141 <0.001

BETO and CNN+fastText 10.208 <0.001

BETO and CNN+BETO 33.767 <0.001

CNN and fastText 0.004 0.945

CNN and CNN+fastText 4.148 0.041

fastText and CNN+fastText 6.318 0.019

CNN and CNN+BETO 0.005 0.943

5 Discussion

Several studies have shown that Shallow ML algorithms, like SVM, present good
performance when the training is carried out in small and homogeneous datasets.
We found Shallow ML algorithms give better results than DL algorithms (includ-
ing fastText and BETO) using a translated PROMISE NFR (RQ1). This finding
supports the work of other studies [25,28] that have demonstrated a better per-
formance of Shallow ML algorithms in small datasets. Although the datasets
used in this research are considered Large-Scale Requirements Engineering (i.e.,
more than 100 and until 1000 requirements [35]), they are still considered small

Requirements Classification Using FastText and BETO 171

in comparison to other datasets used in text classification with ML techniques,
like the IMDb reviews and Reuters dataset presented in [25]. Structured data
is another factor that also influences these results since it is easier to train a
Shallow ML model. In this research, the requirements specifications from the
PROMISE NFR dataset are (semi-)structured.

The fastText classifier was not only the easier algorithm to implement, but
also one of the most effective DL algorithms. Besides, it was the fastest algorithm
among the DL algorithms. In comparison, BETO was the one with the longest
time, due to its architecture and computation complexity, expressed as a limita-
tion in [13,31]. In general, in experiment 1 the f1-score values are higher in the non-
functional over the functional classification, which confirms other similar stud-
ies that use PROMISE NFR in its original language [1,15]. A possible explana-
tion for these results is that the PROMISE NFR dataset has a detailed require-
ment description, especially the use of some cardinal numbers for the NFRs. Kur-
tanovic andMaalej [22] found that cardinal numbers are the best single informative
feature.

We also validate the impact of the use of fastText and BETO embed-
dings (RQ2). The fastText embedding increments the performance when used
as weights in the embedding layer in the CNN architecture and decreases the
number of epochs in training. It is therefore likely that the use of fastText embed-
ding is an influential factor in classification performance when using with CNN,
according to other results in text classifications [37,42].

Regarding the multi-language aspect in requirements classification, we found
some differences between the English and Spanish languages in the classification
process itself. The dataset search was the more challenging. We had to expand
the search for research papers on both languages, consider other not well-known
repositories, and a translation process had to be carried out, due a dataset
of labeled requirements in the Spanish language was not found. Even though
the techniques were the same, some resources for the Spanish language (e.g.
the Snowball stemmer for Spanish from NLTK library) had to be investigated.
Furthermore, a comparative review of our metrics’ values was performed with
previous studies that used the same algorithms and the same dataset in its
original language (RQ3). The metrics values of the shallow ML algorithms are
observably close, but with higher values for the DL algorithms in the English
language. We suspect that different architectures of the DL models could be
one of the factors explaining these gaps. Considering these differences, it can
be assumed that the process used in this study can be used for other languages
similar to Spanish (Romance languages).

A second dataset in Spanish with different origins was used to validate the
generalization of the models obtained in experiment 1 (RQ4). All the models
decrease the f1-score values for a functional classification except for the BETO
classifier. According to these results, we can claim that the BETO classifier,
even trained with a semi-structured and balanced dataset, can offer a better
capability to classify unseen data (generalization). These results reflect those of

172 M.-I. Limaylla-Lunarejo et al.

Hao et al. (2019) [14] and Hey et al. (2020) [15], who also came up with the best-
generalized models using BERT. Cochran’s Q test and McNemar’s test results
confirm the higher performance of BETO over others models is statistically
significant. Without considering BETO, the DL algorithms performed equally,
but significantly less than BETO. It would be interesting to test our obtained
BETO classifiers with other Spanish software repositories to confirm our results.

Finally, the results from experiment 2 also showed that the performance
values are much lower in the non-functional classification, similar to the results
obtained in [27]. This was mainly due to the low precision values. There may be
several possible explanations for this result. One is that some technical words
are used in the definitions of FR, misclassifying FR as NFR. Another factor
could be the lack of detail in the definition of the requirements, compared with
PROMISE NFR. The use of n-grams could also make the shallow ML models
more restrictive [14], even the DL models also present the same problem.

6 Threats to Validity

In this section, we present the threats to the validity of our research as well as
the actions that were taken for their reduction or (partial) mitigation.

1. Internal validity: A common problem in automatic requirements classifica-
tion is the lack of high-quality labeled datasets. Given that the PROMISE
NFR dataset has been already used in previous works, we considered a trans-
lation to Spanish using Google Translate. However, this translation process
can introduce some bias (e.g. gender bias), which can not be mitigated. For
instance, in the English Language, the word “user” is applied for both gender,
but in our translation, “usuario” represents only a neutral/masculine gender.
Furthermore, it’s being considered in the future to use other translators such
as DeepL12, and perform comparisons to ensure greater consistency in the
translation.

2. Construct validity: The classification performance was evaluated by means
of very well-known metrics (i.e., precision, recall and f1-score). However, work-
ing with ML models and small datasets like the PROMISE NFR dataset,
there is a risk of overfitting the models. To avoid this risk, we used the 10-
fold cross-validation technique and tested with different parameters. The code
and dataset were shared in Zenodo, so other developers and/or researchers
can emulate this work.

3. External validity: To increase the external validity of our results obtained
from the first experiment, a second dataset created with different software
projects to PROMISE was used to validate our obtained models. The require-
ments specifications from this dataset represent three project types (web,
android, and broker) and several domains (e.g. Education, Media, Medi-
cal, Finance, etc.) to validate the generalizability of the trained models on
PROMISE NFR. The experiment has shown that BETO (and to a lesser

12 https://www.deepl.com/translator.

https://www.deepl.com/translator

Requirements Classification Using FastText and BETO 173

extent CNN+fastTest) can achieve a good generalization performance on clas-
sifying requirements for different project types and domains. However, con-
sidering the diversity of the Spanish language in Spanish-speaking countries,
more tests in these models need to be undertaken to ensure the generalization
to other Spanish variants and other languages.

7 Conclusions

The purpose of the current study is to investigate the performance of the pre-
trained models fastText and BETO in comparison with other traditional algo-
rithms for automatic functional and non-functional requirements classification in
Spanish datasets, through two experiments. Our findings from our first experi-
ment, using the translated PROMISE NFR dataset, reveal that most of the Shal-
low ML outperform the DL algorithms. However, BETO performed significantly
better on the second dataset (second experiment). This suggests that pre-trained
language models can obtain better generalizability, i.e., can have a better capa-
bility for classifying new requirements, even when their specifications could not
be very well detailed. Finally, even though the BETO classifier obtained the best
performance in generalizability, the fastText classifier overperformed the others
DL algorithms in time processing. Further research might continue to explore
requirements classification in the Spanish language. As our results found that
BETO offers the best generalized model, we plan to replicate the experiment
but including other Spanish BERT-based algorithms. Another natural progres-
sion of this work is expanding our Spanish dataset with requirements from the
industry. However, in order to identify potential companies interested in sharing
their data (if exist), we plan to conduct some interviews in order to understand
the actual practices regarding requirements documentation in Spanish-speaking
organizations.

Acknowledgement. This research was partially funded by Xunta de Galicia/
FEDER-UE ED413C 2021/53 (Database Lab, UDC) and Galician Ministry of Cul-
ture, Education, Professional Training, and University (grants ED431G2019/04,
ED431C2022/19).

References

1. Abad, Z.S.H., Karras, O., Ghazi, P., Glinz, M., Ruhe, G., Schneider, K.: What
works better? A study of classifying requirements. In: Proceedings - 2017 IEEE
25th International Requirements Engineering Conference, RE 2017 (2017). https://
doi.org/10.1109/RE.2017.36

2. AlDhafer, O., Ahmad, I., Mahmood, S.: An end-to-end deep learning system for
requirements classification using recurrent neural networks. Inf. Softw. Technol.
147, 106877 (2022)

3. Alrumaih, H., Mirza, A., Alsalamah, H.: Toward automated software requirements
classification. In: 2018 21st Saudi Computer Society National Computer Conference
(NCC), pp. 1–6. IEEE (2018)

https://doi.org/10.1109/RE.2017.36
https://doi.org/10.1109/RE.2017.36

174 M.-I. Limaylla-Lunarejo et al.

4. Apaza, R.D.G., Barrios, J.E.M., Becerra, D.A.I., Quispe, J.A.H.: ERS-TOOL:
hybrid model for software requirements elicitation in Spanish language. In: Pro-
ceedings of the International Conference on Geoinformatics and Data Analysis, pp.
27–30 (2018)

5. Plaza-del Arco, F.M., Molina-González, M.D., Urena-López, L.A., Mart́ın-
Valdivia, M.T.: Comparing pre-trained language models for Spanish hate speech
detection. Expert Syst. Appl. 166, 114120 (2021)

6. de Arriba, A., Oriol, M., Franch, X.: Applying transfer learning to sentiment anal-
ysis in social media. In: 2021 IEEE 29th International Requirements Engineering
Conference Workshops (REW), pp. 342–348. IEEE (2021)

7. Cañete, J., Chaperon, G., Fuentes, R., Ho, J.H., Kang, H., Pérez, J.: Spanish pre-
trained BERT model and evaluation data. In: PML4DC at ICLR 2020 (2020)

8. Cleland-Huang, J., Mazrouee, S., Liguo, H., Port, D.: NFR [data set], March 2007.
https://doi.org/10.5281/zenodo.268542

9. Dalal, M.K., Zaveri, M.A.: Automatic text classification: a technical review. Int.
J. Comput. Appl. 28(2), 37–40 (2011)

10. De Arriba, A., Oriol, M., Franch, X.: Merging datasets for emotion analysis. In:
2021 36th IEEE/ACM International Conference on Automated Software Engineer-
ing Workshops (ASEW), pp. 227–231. IEEE (2021)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

12. Dias Canedo, E., Cordeiro Mendes, B.: Software requirements classification using
machine learning algorithms. Entropy 22(9), 1057 (2020)

13. Han, X., et al.: Pre-trained models: past, present and future. AI Open 2, 225–250
(2021)

14. Hao, Y., Dong, L., Wei, F., Xu, K.: Visualizing and understanding the effectiveness
of BERT. arXiv preprint arXiv:1908.05620 (2019)

15. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: NoRBERT: transfer learning for
requirements classification. In: 2020 IEEE 28th International Requirements Engi-
neering Conference (RE), pp. 169–179. IEEE (2020)

16. Hussain, A., Mkpojiogu, E.O., Kamal, F.M.: The role of requirements in the success
or failure of software projects. Int. Rev. Manag. Mark. 6(7S), 306–311 (2016)

17. Instituto Cervantes: El español una lengua viva (2021). https://cvc.cervantes.es/
lengua/espanol lengua viva/. Accessed 30 Nov 2021

18. Janiesch, C., Zschech, P., Heinrich, K.: Machine learning and deep learning. Elec-
tron. Mark. 31(3), 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2

19. Jindal, R., Malhotra, R., Jain, A.: Techniques for text classification: literature
review and current trends. Webology 12(2) (2015)

20. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

21. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1746–1751. ACL, Doha, October 2014. https://doi.org/10.3115/
v1/D14-1181

22. Kurtanovic, Z., Maalej, W.: Automatically classifying functional and non-
functional requirements using supervised machine learning. In: Proceedings - 2017
IEEE 25th International Requirements Engineering Conference, RE 2017 (2017).
https://doi.org/10.1109/RE.2017.82

23. Li, G., Zheng, C., Li, M., Wang, H.: Automatic requirements classification based
on graph attention network. IEEE Access 10, 30080–30090 (2022)

https://doi.org/10.5281/zenodo.268542
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1908.05620
https://cvc.cervantes.es/lengua/espanol_lengua_viva/
https://cvc.cervantes.es/lengua/espanol_lengua_viva/
https://doi.org/10.1007/s12525-021-00475-2
http://arxiv.org/abs/1607.01759
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.1109/RE.2017.82

Requirements Classification Using FastText and BETO 175

24. Li, L.F., Jin-An, N.C., Kasirun, Z.M., Chua, Y.P.: An empirical comparison of
machine learning algorithms for classification of software requirements. Int. J. Adv.
Comput. Sci. Appl. 10(11) (2019)

25. Li, Q., et al.: A survey on text classification: from shallow to deep learning. arXiv
preprint arXiv:2008.00364 (2020)

26. Lima, M., Valle, V., Costa, E., Lira, F., Gadelha, B.: Software engineering repos-
itories: expanding the promise database. In: Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, pp. 427–436 (2019)

27. Limaylla-Lunarejo, M.I., Condori-Fernandez, N., Luaces, M.R.: Towards an auto-
matic requirements classification in a new Spanish dataset. In: 2022 IEEE 30th
International Requirements Engineering Conference (RE), pp. 270–271. IEEE
(2022)

28. Liu, S.: Sentiment analysis of yelp reviews: a comparison of techniques and models.
arXiv preprint arXiv:2004.13851 (2020)

29. López-Úbeda, P., Plaza-del Arco, F.M., Dı́az-Galiano, M.C., Mart́ın-Valdivia,
M.T.: How successful is transfer learning for detecting anorexia on social media?
Appl. Sci. 11(4), 1838 (2021)

30. Navarro-Almanza, R., Juarez-Ramirez, R., Licea, G.: Towards supporting software
engineering using deep learning: a case of software requirements classification. In:
2017 5th International Conference in Software Engineering Research and Innova-
tion (CONISOFT), pp. 116–120. IEEE (2017)

31. Qiu, X.P., Sun, T.X., Xu, Y.G., Shao, Y.F., Dai, N., Huang, X.J.: Pre-trained
models for natural language processing: a survey. Sci. China Technol. Sci. 63(10),
1872–1897 (2020). https://doi.org/10.1007/s11431-020-1647-3

32. Quba, G.Y., Al Qaisi, H., Althunibat, A., AlZu’bi, S.: Software requirements clas-
sification using machine learning algorithm’s. In: 2021 International Conference
on Information Technology (ICIT), pp. 685–690 (2021). https://doi.org/10.1109/
ICIT52682.2021.9491688

33. Rahimi, N., Eassa, F., Elrefaei, L.: One-and two-phase software requirement clas-
sification using ensemble deep learning. Entropy 23(10), 1264 (2021)

34. Raschka, S.: Model evaluation, model selection, and algorithm selection in machine
learning. arXiv preprint arXiv:1811.12808 (2018)

35. Regnell, B., Svensson, R.B., Wnuk, K.: Can we beat the complexity of very large-
scale requirements engineering? In: Paech, B., Rolland, C. (eds.) REFSQ 2008.
LNCS, vol. 5025, pp. 123–128. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-69062-7 11

36. Sainani, A., Anish, P.R., Joshi, V., Ghaisas, S.: Extracting and classifying require-
ments from software engineering contracts. In: 2020 IEEE 28th International
Requirements Engineering Conference (RE), pp. 147–157. IEEE (2020)

37. Santos, I., Nedjah, N., de Macedo Mourelle, L.: Sentiment analysis using convolu-
tional neural network with fastText embeddings. In: 2017 IEEE Latin American
Conference on Computational Intelligence (LA-CCI), pp. 1–5. IEEE (2017)

38. Sayyad Shirabad, J., Menzies, T.: The PROMISE repository of software engineer-
ing databases. School of Information Technology and Engineering, University of
Ottawa, Canada (2005). https://promise.site.uottawa.ca/SERepository

39. Tiun, S., Mokhtar, U., Bakar, S., Saad, S.: Classification of functional and non-
functional requirement in software requirement using Word2vec and fast text. J.
Phys. Conf. Ser. 1529, 042077 (2020)

40. Tripathy, A., Agrawal, A., Rath, S.K.: Classification of sentiment reviews using
N-Gram machine learning approach. Expert Syst. Appl. 57, 117–126 (2016)

http://arxiv.org/abs/2008.00364
http://arxiv.org/abs/2004.13851
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1109/ICIT52682.2021.9491688
https://doi.org/10.1109/ICIT52682.2021.9491688
http://arxiv.org/abs/1811.12808
https://doi.org/10.1007/978-3-540-69062-7_11
https://doi.org/10.1007/978-3-540-69062-7_11
https://promise.site.uottawa.ca/SERepository

176 M.-I. Limaylla-Lunarejo et al.

41. Úbeda, P.L., Dı́az-Galiano, M.C., López, L.A.U., Mart́ın-Valdivia, M.T., Mart́ın-
Noguerol, T., Luna, A.: Transfer learning applied to text classification in Spanish
radiological reports. In: Proceedings of the LREC 2020 Workshop on Multilingual
BIO 2020, pp. 29–32 (2020)

42. Umer, M., et al.: Impact of convolutional neural network and fastText embedding
on text classification. Multimedia Tools Appl. 82, 1–17 (2022)

43. Vanjani, M., Aiken, M.: A comparison of free online machine language translators.
J. Manag. Sci. Bus. Intell 5, 26–31 (2020)

44. Virtanen, A., et al.: Multilingual is not enough: BERT for Finnish. arXiv preprint
arXiv:1912.07076 (2019)

45. Xu, R., Yang, Y.: Cross-lingual distillation for text classification. arXiv preprint
arXiv:1705.02073 (2017)

46. Zhao, L., et al.: Natural language processing (NLP) for requirements engineering:
a systematic mapping study. arXiv preprint arXiv:2004.01099 (2020)

http://arxiv.org/abs/1912.07076
http://arxiv.org/abs/1705.02073
http://arxiv.org/abs/2004.01099

RE for Artificial Intelligence

Exploring Requirements for Software
that Learns: A Research Preview

Marie Farrell1(B), Anastasia Mavridou2(B), and Johann Schumann2

1 Department of Computer Science, The University of Manchester, Manchester, UK
marie.farrell@manchester.ac.uk

2 KBR Inc at NASA Ames Research Center, Mountain View, USA

anastasia.mavridou@nasa.gov

Abstract. Context & Motivation: The development of software that
learns has revolutionized how many systems perform. For the most part,
these systems are neither safety- nor mission-critical. However, as tech-
nology and aspirations advance, there is an increased desire and need
for Machine Learning (ML) software in safety- and mission-critical sys-
tems, e.g., driverless cars or autonomous space robotics. Problem: In
these domains, reliability is crucial and systems have to undergo much
scrutiny in terms of both the developed artefacts and the adopted devel-
opment process. Central to the development of such systems is the elic-
itation and definition of software requirements that are used to guide
the design and verification process. The addition of software compo-
nents that learn, and the associated capability for unforeseen behavior,
makes defining detailed software requirements especially difficult. Prin-
cipal ideas/results: In this paper, we identify unique characteristics of
software requirements that are specific to ML components. To this end,
we collect and examine requirements from both academic and industrial
sources. Contribution: To the best of our knowledge, this is the first
work that presents real-life, industrial patterns of requirements for ML
components. Furthermore, this paper identifies key characteristics and
provides a foundation for developing a taxonomy of requirements for
software that learns.

1 Introduction

The design of critical systems begins with the definition of natural-language
objectives and high-level requirements. Once defined, high-level objectives and
requirements are subsequently decomposed into detailed system- and module-
level requirements. Any subsequent verification and validation effort must sup-
port traceability of requirements and provide evidence that they are upheld. In
fact, requirements traceability is prescribed by a number of international stan-
dards including DO-178C for the aerospace domain [21].

This process is well-understood for traditional systems since these systems
typically operate in constrained, well-defined environments and thus usually
exhibit predictable behavior. As a result, requirement analysis for such systems
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright
protection may apply 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 179–188, 2023.
https://doi.org/10.1007/978-3-031-29786-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_12

180 M. Farrell et al.

returns absolute answers, i.e., absolute success (requirements are satisfied by the
system) or absolute failure (requirements are not satisfied by the system).

Non-traditional systems, on the other hand, such as ones that rely on Machine
Learning (ML) components, bring uncertainty that impacts requirements elic-
itation and analysis. Requirements for ML components often use probabilities
to quantify uncertainties about system behavior and the environment. Further-
more, their analysis may return either absolute or probabilistic answers.

Similar challenges are encountered and must be addressed for autonomous
systems that often rely on AI components, such as ML for key behaviors. In
general, systems consist of both hardware and software components and require-
ments must be defined for both of these aspects. In this paper, we are primarily
concerned with software requirements, although we recognize that sometimes
software and hardware requirements cannot be completely separated.

Since accurate requirements provide the underlying properties against which
a system should be verified, this research preview paper provides a starting
point for those interested in verifying ML systems. Understanding the nature of
requirements for systems that incorporate ML components is important, partic-
ularly if these systems are to operate in critical domains e.g., aerospace.

Our ultimate goal is to extend NASA’s Formal Requirements Elicitation Tool
(FRET)1 [12,19] for capturing, formalizing, and analyzing requirements for soft-
ware that learns. To achieve this, we must first develop an understanding of the
nature of such requirements and what distinguishes them from requirements for
classical systems. Thus, our research plan involves: (1) examine existing require-
ments, (2) determine the commonalities and differences between requirements for
classical systems and those that learn, (3) identify the specific unique character-
istics of requirements for systems that learn, (4) develop a taxonomy of require-
ments, (5) classify and examine those identified in (1), and (6) make appropri-
ate extensions to FRET to support requirements for software that learns. This
research preview paper describes our initial findings from exploring a corpus of
such requirements, focusing on steps (1)–(3) above.

We observed an increasing number of research papers discussing aspects
and challenges of the requirements engineering discipline in the development
of autonomous, AI-based systems [5,15,16,23]. The aspects identified in these
papers are usually discussed at a high level without showcasing real-life require-
ments. We differ from the above related work by providing specific requirements
and requirement patterns from industrial case studies and missions. The require-
ments that we have gathered are primarily from the aerospace domain with some
autonomous driving examples. We distill the common features amongst these
requirements and provide a basis for developing a taxonomy of ML requirements.

2 Requirements for Autonomous Systems

According to a recent survey [17], requirements engineering is one of the most
challenging activities for ML-related system development. This is primarily due
1 https://github.com/NASA-SW-VnV/fret.

https://github.com/NASA-SW-VnV/fret

Exploring Requirements for Software that Learns 181

Table 1. Requirement examples from literature review and the R-RAV project.

Req ID Requirement Source

Literature Studies

[LR-001] The aircraft location does not exceed a specified lateral offset from the
runway centerline during taxiing

[2,4]

[LR-002] The aircraft does not veer off the sides of the runway during taxiing [2,4]

[LR-003] All bounding boxes produced shall be no more than 10% larger in any
dimension than the minimum sized box capable of including the entirety
of the pedestrian

[14]

[LR-004] The ML component shall determine the position of the specified feature
in each input frame within 5 pixels of actual position

[14]

[LR-005] The ML component shall identify the presence of any person present in
the defined area with an accuracy of at least 0.93

[14]

[LR-006] The ML component shall perform as required in the defined range of
lighting conditions experienced during operation of the system

[14]

[LR-007] The ML component shall identify a person irrespective of their pose with
respect to the camera

[14]

[LR-008] When Ego is 50m from the crossing, the object detection component shall
identify pedestrians that are on or close to the crossing in their correct
position

[11]

[LR-009] In a sequence of images from a video feed any object to be detected
should not be missed more than 1 in 5 frames

[11]

[LR-010] Position of pedestrians shall be determined within 50cm of actual position [11]

[LR-011] The object detection component shall perform as required in all situations
Ego may encounter within the defined ODD

[11]

[LR-012] The object detection component shall perform as required in the face of
defined component failures arising within the system

[11]

R-RAV Project

[RRAV-001] The neural network shall output the cross track distance error
(perpendicular distance from the rover to the centerline.) Error to truth
must not exceed X

[R-RAV]

[RRAV-002] Neural network shall output cross track heading error (the angle between
the rover heading and the centerline.) Error to truth must not exceed X

[R-RAV]

[RRAV-003] Upon receiving an image, the Neural Network shall output the distance
and the angle within X seconds (latency)

[R-RAV]

[RRAV-004] Neural network shall output a sensible distance: the value must be
between 0 and half the width of the taxiway plus X (buffer X so that it
can still report if it is off the taxiway)

[R-RAV]

[RRAV-005] Neural network shall output a sensible angle: the value must be between
-90 and 90 degrees

[R-RAV]

[RRAV-006] The neural network shall achieve a minimum of X% accuracy on training
and Y% accuracy on testing

[R-RAV]

[RRAV-007] (Local robustness) The neural network shall be robust to small
perturbations in the image (pixels)

[R-RAV]

[RRAV-008] (Semantic variations) The neural network shall be robust to irrelevant
variations in the scene

[R-RAV]

[RRAV-009] The neural network shall safely navigate intersections [R-RAV]

[RRAV-010] The magnitude of the cross track distance error shall drop below X m
within T seconds and remain there

[R-RAV]

[RRAV-011] The magnitude of the cross track heading error shall drop below X
degrees within T seconds and remain there

[R-RAV]

182 M. Farrell et al.

to uncertainties around the exact input/output behavior of ML components.
To better understand such uncertainties, we present requirements that we have
gathered from different sources, as shown in Tables 1 and 2.

Table 2. Requirement patterns extracted from missions and industrial case studies.

Req ID Requirement Pattern (source: NASA)

[IC-001] The sw shall achieve an average PARAMETER value of X

[IC-002] The sw shall estimate PARAMETER to within + −X with a Y % confidence

[IC-003] The sw shall estimate the confidence of the PARAMETER estimate

[IC-004] The requirement shall be verified by measuring the average of the parameter over N
repetitions

[IC-005] The sw shall estimate PARAMETER with an X% confidence interval of no more than
+ − Y

[IC-006] The sw shall calculate the PARAMETER confidence interval at an X% confidence
level

[IC-007] The sw shall calculate the PARAMETER as a probability distribution

[IC-008] The sw shall determine PARAMETER with a high level of confidence

[IC-009] The sw shall detect X% of occurrences of EVENT

[IC-010] The risk-ratio requirements shall be verified using a statistically significant set of
SCENARIOS

[IC-011] The sw shall cause EVENT at a rate less than X times per Y DURATION

[IC-012] The sw shall detect CONDITION that implies EVENT is probable

[IC-013] The sw shall take action so that the risk ratio thresholds are satisfied

Studying the Literature: We examined literature from the assurance case
domain [2–4,9,11,14]. Requirements [LR-001] and [LR-002] in Table 1 refer to
the TaxiNet system [10], which uses a vision-based neural network to predict an
aircraft’s position on the runway relative to the center-line to enable autonomous
runway taxiing. We recognise that [LR-001] and [LR-002] are quite high-level
and might also apply to non-autonomous systems with similar goals. These are
system-level requirements and likely have implications for both hardware and
software. We consider them as specific to the ML component because TaxiNet
is driven by a neural network whose output is directly related to the preserva-
tion of these requirements. The autonomous driving requirement [LR-005] is a
functional requirement about the ML component.

R-RAV Project: Table 1, Part 2 shows requirements that we elicited in conjunc-
tion with developers as part of the R-RAV project at NASA Ames, which takes
a similar approach to TaxiNet and is driven by a neural network. These require-
ments are likely more detailed than those in [2] because the focus was on the
elicitation, formalization, and verification of detailed requirements rather than
on assurance case development. [RRAV-005], [RRAV-006] and [RRAV-007]

specifically refer to the neural network. Conversely, [RRAV-011] describes the
behavior of the neural network based control system. Such requirements about
control system behavior can also be found in traditional systems.

Exploring Requirements for Software that Learns 183

Missions/Industrial Case Studies: Table 2, contains 13 sanitized requirement
patterns, which were obtained after manually analyzing 770 requirements from
missions and industrial case studies that use AI. We call these patterns as they
do not contain specific system details. Upper case variables must be instantiated
by actual names and values to yield a multitude of similar requirements. Many of
the requirements shown in Table 2 specify constraints on the computed param-
eters (e.g., [IC-001]) and have a notion of confidence (e.g., [IC-002]) which we
discuss in Sect. 3. Other requirements explicitly mention probabilities, e.g., that
a particular event is probable once a specific condition is met ([IC-012]).

3 ML Requirement Attributes and Characteristics

By looking at the requirements in Tables 1 and 2, we observe that notions of
confidence, accuracy, and average value are often used to describe probabilistic
requirements. However, the semantics of these terms is not always clear; we
elaborate below. We also consider other characteristics including robustness,
data-driven learning and quality aspects.

3.1 Confidence, Criticality, and Risk Levels

Requirements [LR-001] and [LR-002] are associated with different confidence
levels. Although these confidence levels are not part of the requirement text, they
have been added in [2,4] through separate requirement attributes. For example,
[LR-001] must hold 95% of the time (lower confidence level), while [LR-002]

must hold 100% of the time (higher confidence level), i.e., the TaxiNet system
must avoid any runway excursion.

Confidence levels are tightly related to risk levels. For each hazard (e.g.,
lateral offset violation) a risk is calculated based on the likelihood and severity of
the event [22]. Risk factors are usually defined in relevant standards, e.g., see risk
ratios in [1]. The level of risk of an event determines the level of risk associated
with the corresponding requirement and implies the required confidence level
that must be achieved. E.g., [LR-002] is associated with a high risk level since
it should not be violated under any circumstance. On the contrary, [LR-001] is
lower on the risk scale, since it might be violated without unwanted consequences.

Confidence levels may consist of quantitative and qualitative components. A
confidence level may indicate the amount of testing necessary for the result to be
accepted, the accepted success rate, the type of analysis that must be performed
to verify the property, etc. All of these characterize the level of confidence that
must be achieved in order to assure that the corresponding requirement is met.
Consider, e.g., [LR-001], where the quantitative component of the confidence
level requires: (1) a 95% success rate for TaxiNet to be within a specified lateral
offset and (2) a way of ensuring (during V&V) that this measure is achieved.
Qualitative components do not contain explicit numbers. For a requirement with
a high criticality level the qualitative component might recommend specific (com-
binations of) verification techniques to ensure greater coverage and rigor.

184 M. Farrell et al.

Although confidence levels for [LR-001] and [LR-002] are not part of the
requirement text, confidence levels do appear in others. For example, in [IC-

002] the parameter estimation must hold with “Y%” confidence. Confidence
levels are frequently used to inform the choice and/or combination of verifi-
cation methods. For example, requirements with low confidence levels may be
only tested (up to a desired level of coverage) whereas requirements with high
confidence levels may require testing alongside formal verification methods and
runtime monitoring [18]. For critical systems, assurance cases typically contain
an argument that the confidence level is met by sufficiently rigorous verification
and implemented mitigations.

3.2 Accuracy as a Measure of Functional Correctness

The notion of accuracy is frequently encountered in ML system requirements [6].
Accuracy is quantifiable and evaluates the functional correctness of an ML model
(accuracy during training) or the correctness of the output of an ML component
(accuracy during testing/execution). Recent work defines and provides a way of
calculating the accuracy of an ML system based on the results obtained while
in training and during testing/deployment [20]. Essentially, accuracy defines the
rate at which the ML must answer correctly. In this respect, accuracy might be
viewed as a quantitative aspect of confidence, e.g., the required success rate of
an ML system.

Specifically, [RRAV-006] defines the required levels of accuracy during both
training and testing of a neural network. [LR-005] requires an accuracy level
of at least ‘0.93’ during execution — this is the required rate that the ML
component correctly identifies the presence of a person. [IC-002] incorporates
both accuracy and confidence. It requires an accuracy interval, a bound within
which a specific parameter should be estimated, but it also includes a percentage
for the confidence level that needs to be achieved, i.e., an acceptable success rate.

We recognise that accuracy is also important in classical control systems that
often rely on (potentially noisy) sensors (e.g. aircraft engine controllers). For ML
components, accuracy also refers to the decision-making process. For example,
an inaccurate control system produces a value outside of a correct range, it is not
capable of misidentifying the presence of a human in a roadway. Further, it is
possible to enumerate the outputs (even erroneous ones) of a control system but
the output behaviours of a system driven by ML can often not be completely pre-
determined (as new behaviours may be learned). The control system inaccuracy
is also more straightforwardly reproduced than ML inaccuracies since the system
continues to learn.

3.3 Achievement of Average Value

We also frequently encountered the word average in our requirement examples
(e.g., [IC-004]). The achievement of an average value measure evaluates the
consistency of the output data of an ML system. The requirement provides the
target average value (X) of the ML output data and testing/analysis techniques

Exploring Requirements for Software that Learns 185

need to assure that, on average, the ML component meets the target value (X).
This notion of an average value is frequently encountered in requirements for
ML systems but usually less often in requirements for traditional systems, which
typically deal with mode logic or embody implicit state machines rather than
numerical algorithms.

3.4 Robustness

ML components, such as deep neural networks, are vulnerable to adversarial
perturbations in the input. This means that small changes to the input may
cause the network to produce erroneous output and has implications for both
safety and security [13]. A related property is local robustness which specifies
that all points within a particular distance from one another be given the same
label. E.g., [RRAV-007] requires that each input similar to one encountered
during training produces a similar output. This kind of requirement is unique to
ML systems since it refers to the training and the test set as well as previously
unseen data.

3.5 Data-Driven Learning

Most ML systems are data-driven. In particular, neural networks are trained
using training data (e.g. set of images) which can often contain synthetic data.
After training, ML systems are tested on testing data that should be separate
from the training data and is expected to be representative of the physical deploy-
ment environment. Once deployed, the system may continue to learn using pre-
viously unseen data that were not present in either the training or testing data.
Although not discussed in this paper, requirements are necessary to specify data
coverage, specific conditions (e.g., weather conditions for TaxiNet), data accu-
racy and validation, as well as data acquisition and processing. Care should be
taken to ensure that all of the data in the training set have been accurately
labelled during a pre-processing phase [14]. Further, the data used should be
relevant, complete, accurate and balanced [11]. Details on requirements for ML
data can be found in the proposed EASA guidelines [8].

3.6 Quality Aspects

The presented requirements are formulated as detailed and often low level. They
tend to refer to the specific way that the system or component should achieve its
goal and the allowable bounds for particular variables/computations. In addition
to a new flavour of requirements, developers and users of ML systems are inter-
ested in quality aspects such as explainability, transparency, fairness, and ethical
requirements. We have not encountered such examples but we understand that,
as this field progresses, they will become necessary, in particular, for ML systems
that are deployed in close proximity to humans [7].

186 M. Farrell et al.

4 Uncertainty in ML Requirements

Clearly, many of the characteristics identified in Sect. 3 relate to uncertainty and
probability plays a distinguishing role in ML requirements. As such, below we
examine the probabilistic nature of requirements for ML systems.

Not Always Probabilistic: ML systems contain uncertainty. However, some of
the requirements and the way that the system functions follow deterministic
behavior as is usual for traditional systems. E.g., requirements [LR-002] (con-
fidence level 100%) and [RRAV-005] describe specific behaviors that do not,
at least at a high-level, create or rely on uncertain behavior. To this end, even
though the addition of ML increases uncertainty, there are still more traditional
requirements that the system should uphold. These requirements can be cap-
tured with existing requirement engineering (RE) tools that do not necessarily
support probabilities and be verified using existing methods.

Probabilities Within Requirements: The majority of the requirements that we
collected contain probabilities. This feature is unique to ML systems since more
traditional systems usually exhibit deterministic behavior and so probabilities
are not often present in their requirements. Examples include: [RRAV-006] and
[IC-012], both are formulated as logical statements with explicit probabilities.
To capture such requirements, RE tools must support probabilities.

Confidence Levels or Probabilities about Requirements: In several cases, there
was explicit mention of confidence levels or of probabilities about how often a
specific requirement should hold. Such requirements were prevalent in the mis-
sion/industrial case studies requirement patterns. Confidence levels may appear
inside (e.g., [IC-002]) or outside of the requirement text (e.g., [LR-001]) through
an associated attribute/tag. To support the specification of confidence levels,
tags can be used in RE tools to account for both quantitative and qualitative
confidence components. Such tags allow us to separate, in some cases, formaliza-
tion from analysis concerns and may inform the choice of verification method,
as outlined in the previous section.

5 Conclusion, Limitations, and Future Work

Threats to Validity: In this paper, we provide a collection of requirements for
software that learns. The selection of specific requirements poses a threat to con-
clusion validity, since our efforts were primarily focused on the aerospace domain
and it is possible that other domains would reveal additional characteristics. We
intend to explore this as future work. It is also possible that our derived pat-
terns are incomplete and examining other use cases will help to identify gaps.
We examined a significant number of requirements, both from the literature and
other projects, but given that applications of ML software are fast-evolving, it
is possible that this sample is not large enough to be representative. This poses
a threat to external validity of the generalizability of our results. Finally, we do

Exploring Requirements for Software that Learns 187

not explicitly distinguish requirements of the ML component from requirements
of systems that may be put in place (e.g. monitors) that maintain oversight and
invoke mitigations if the ML system produces erroneous or dangerous results.

Conclusion: As ML becomes more prevalent, it is necessary to create
new/modify existing methods to verify systems incorporating ML. This paper
focuses on providing and analysing multiple, detailed, real-life requirements for
ML components. We observed that such requirements fall into recurring pat-
terns. Table 2 shows 13 reusable patterns, which were derived from 770 mis-
sion/industrial requirements. We studied their common characteristics, and pro-
vided a classification in terms of their probabilistic nature. We focused primar-
ily on requirement specification, rather than verification, but in practice these
requirements would be verified. Exploring the available methods that are capa-
ble of expressing probabilistic properties for verification will be necessary as this
work progresses.

Our ultimate goal is to extend FRET, but we believe that the presented
work is relevant in general for RE tools and approaches. The collection of iden-
tified requirement patterns can be integrated as requirement templates in RE
tools to guide developers in writing ML requirements, which can be challenging.
These patterns, coupled with the key characteristics that we identify, provide a
foundation for developing a taxonomy of requirements for software that learns.

Acknowledgements. The authors thank Thomas Pressburger and Irfan Sljivo for
requirement examples, insightful feedback and discussions. Thanks also to the anony-
mous reviewers who provided detailed improvement suggestions. Marie Farrell was sup-
ported by a Royal Academy of Engineering Research Fellowship. Anastasia Mavridou
and Johann Schumann were supported by NASA contract 80ARC020D0010.

References

1. Standard Specification for Detect and Avoid System Performance Requirements.
ASTM International (2020)

2. Asaadi, E., et al.: Assured integration of machine learning-based autonomy on
aviation platforms. In: Digital Avionics Systems, pp. 1–10. IEEE (2020)

3. Asaadi, E., Denney, E., Menzies, J., Pai, G.J., Petroff, D.: Dynamic assurance
cases: a pathway to trusted autonomy. Computer 53(12), 35–46 (2020)

4. Asaadi, E., Denney, E., Pai, G.: Quantifying assurance in learning-enabled systems.
In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020.
LNCS, vol. 12234, pp. 270–286. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-54549-9 18

5. Belani, H., Vuković, M., Car, Ž.: Requirements engineering challenges in building
AI-based complex systems (2019)

6. Berry, D.M.: Requirements engineering for artificial intelligence: what is a require-
ments specification for an artificial intelligence? In: Gervasi, V., Vogelsang, A.
(eds.) REFSQ 2022. LNCS, vol. 13216, pp. 19–25. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-98464-9 2

https://doi.org/10.1007/978-3-030-54549-9_18
https://doi.org/10.1007/978-3-030-54549-9_18
https://doi.org/10.1007/978-3-030-98464-9_2
https://doi.org/10.1007/978-3-030-98464-9_2

188 M. Farrell et al.

7. Chuprina, T., Mendez, D., Wnuk, K.: Towards artefact-based requirements engi-
neering for data-centric systems. In: Workshop on Requirements Engineering for
Artificial Intelligence, vol. 2857. CEUR-WS (2021)

8. European Union Aviation Safety Agency (EASA): EASA Concept Paper: First
usable guidance for Level 1 machine learning applications (2021)

9. Fremont, D.J., Chiu, J., Margineantu, D.D., Osipychev, D., Seshia, S.A.: Formal
analysis and redesign of a neural network-based aircraft taxiing system with Ver-
ifAI. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 122–134.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 6

10. Frew, E., et al.: Vision-based road-following using a small autonomous aircraft. In:
IEEE Aerospace Conference, vol. 5, pp. 3006–3015 (2004)

11. Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagiwara, Y., Habli, I.:
Assuring the safety of machine learning for pedestrian detection at crossings. In:
Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS,
vol. 12234, pp. 197–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54549-9 13

12. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET (2020)

13. Gopinath, D., Katz, G., Păsăreanu, C.S., Barrett, C.: DeepSafe: a data-driven
approach for assessing robustness of neural networks. In: Lahiri, S.K., Wang, C.
(eds.) ATVA 2018. LNCS, vol. 11138, pp. 3–19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01090-4 1

14. Hawkins, R., Paterson, C., Picardi, C., Jia, Y., Calinescu, R., Habli, I.: Guidance
on the assurance of machine learning in autonomous systems (AMLAS). arXiv
preprint arXiv:2102.01564 (2021)

15. Heyn, H.-M.: Requirement engineering challenges for AI-intense systems develop-
ment. In: 2021 IEEE/ACM 1st Workshop on AI Engineering-Software Engineering
for AI (WAIN), pp. 89–96. IEEE (2021)

16. Horkoff, J.: Non-functional requirements for machine learning: challenges and new
directions. In: Requirements Engineering, pp. 386–391. IEEE (2019)

17. Ishikawa, F., Yoshioka, N.: How do engineers perceive difficulties in engineering of
machine-learning systems? - Questionnaire survey. In: International Workshop on
Conducting Empirical Studies in Industry and International Workshop on Software
Engineering Research and Industrial Practice, pp. 2–9 (2019)

18. Luckcuck, M., Farrell, M., Dennis, L.A., Dixon, C., Fisher, M.: Formal specification
and verification of autonomous robotic systems: a survey. ACM Comput. Surv.
52(5), 1–41 (2019)

19. Mavridou, A., et al.: The ten lockheed martin cyber-physical challenges: formalized,
analyzed, and explained. In: Requirements Engineering, pp. 300–310 (2020)

20. Nakamichi, K., et al.: Requirements-driven method to determine quality charac-
teristics and measurements for machine learning software and its evaluation. In:
Requirements Engineering, pp. 260–270. IEEE (2020)

21. Rierson, L.: Developing Safety-Critical Software: A Practical Guide for Aviation
Software and DO-178C Compliance. CRC Press (2017)

22. Ross, R.S.: Guide for conducting risk assessments. Technical report, National Insti-
tute of Standards and Technology, September 2012. SP 800–30 Rev. 1

23. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspec-
tives from data scientists (2019)

https://doi.org/10.1007/978-3-030-53288-8_6
https://doi.org/10.1007/978-3-030-54549-9_13
https://doi.org/10.1007/978-3-030-54549-9_13
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
http://arxiv.org/abs/2102.01564

Requirements Engineering
for Automotive Perception Systems: An

Interview Study

Khan Mohammad Habibullah1(B), Hans-Martin Heyn1, Gregory Gay1,
Jennifer Horkoff1, Eric Knauss1, Markus Borg2, Alessia Knauss3,

H̊akan Sivencrona3, and Jing Li4

1 Chalmers — University of Gothenburg, Gothenburg, Sweden
{khan.mohammad.habibullah,hans-martin.heyn,jennifer.horkoff,

eric.knauss}@gu.se, greg@greggay.com
2 Lund University, Lund, Sweden

markus.borg@cs.lth.se
3 Zenseact AB, Gothenburg, Sweden

{alessia.knauss,hakan.sivencrona}@zenseact.com
4 Kognic AB, Gothenburg, Sweden

polly.jing.li@kognic.com

Abstract. Background: Driving automation systems (DAS), includ-
ing autonomous driving and advanced driver assistance, are an important
safety-critical domain. DAS often incorporate perceptions systems that
use machine learning (ML) to analyze the vehicle environment. Aims:
We explore new or differing requirements engineering (RE) topics and
challenges that practitioners experience in this domain. Method: We
have conducted an interview study with 19 participants across five com-
panies and performed thematic analysis. Results: Practitioners have dif-
ficulty specifying upfront requirements, and often rely on scenarios and
operational design domains (ODDs) as RE artifacts. Challenges relate
to ODD detection and ODD exit detection, realistic scenarios, edge case
specification, breaking down requirements, traceability, creating specifi-
cations for data and annotations, and quantifying quality requirements.
Conclusions: Our findings contribute to understanding how RE is prac-
ticed for DAS perception systems and the collected challenges can drive
future research for DAS and other ML-enabled systems.

Keywords: Machine learning · Requirements engineering · Perception
systems · Driving automation systems · Autonomous driving

1 Introduction

Driving automation systems (DAS), including both autonomous driving (AD)
and advanced driver assistance systems (ADAS), are software systems designed

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 189–205, 2023.
https://doi.org/10.1007/978-3-031-29786-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_13

190 K. M. Habibullah et al.

to augment or automate aspects of vehicle control [15]. DAS have long been a
domain of interest. However, the increased capabilities and usability of machine
learning (ML) have subsequently improved the capabilities of—and interest in—
such systems. Research advances have produced improved comfort and safety,
and reduced fuel and energy consumption, emissions, and travel time [15].

Fig. 1. Conceptual model of quality transitions from data collection to the quality of
the automotive function.

DAS functionality depends on the correctness and the integrity of percep-
tion systems that blend ML-based models and traditional signal processing1.
The usage of ML for perception relies on a large quantity of data. Data qual-
ity, context, and attributes—as well as annotation quality—have a significant
impact on the resulting system quality. However, it is difficult to make direct
connections between data, annotation, ML model quality and the resulting func-
tional quality of a perception system (e.g., between the boxes in Fig. 1). The
inherent uncertainty of ML—coupled with the desired levels of data quality and
coverage—creates substantial process and requirements engineering (RE) chal-
lenges in perception system development [7].

RE is an important foundational element of quality assurance and safety engi-
neering. RE plays a critical role in perception system development by enabling
explicit capture of safety and quality requirements, supporting communication,
recording functional expectations, and ensuring that standards are followed.
Recent research has explored RE challenges for ML systems, e.g., [6,22]. How-
ever, such challenges have not been thoroughly explored in the context of per-
ception systems for DAS. Addressing this gap is necessary to advance practices
in both this domain and in the broader context of RE for AI.

To explore important topics and challenges for perception systems, we have
conducted an interview study with 19 expert interviewees from five companies
working in various DAS roles. We analyzed interview data using thematic coding
to produce eight major themes: perception, requirements engineering, systems
and software engineering, AI and ML models, annotation, data, ecosystem and

1 In this paper, we focus specifically on ML-based perception systems for DAS, but
often use the term perception systems as shorthand.

RE for Automotive Perception Systems 191

business, and quality. Here, we analyze data collected as part of the RE theme,
and explore critical RE topics and challenges for perception systems2.

Our findings indicate that practitioners have difficulty breaking down spec-
ifications for the ML components. In practice, individuals report that they use
scenarios, operational design domains (ODDs), and simulations as part of RE.
Practitioners experience RE challenges related to uncertainty, ODD detection,
realistic scenarios, edge case specification, traceability, creating specifications for
data and annotations, and quantifying quality requirements.

By summarizing the views and challenges of different experts on RE for ML-
enabled perception systems, our results are valuable for practitioners working
to advance this area. Additionally, our findings contribute to improving RE
knowledge more broadly in other domains reliant on ML.

2 Related Work

RE for ML: Recent research has focused on how RE could or must change in
the face of rising use of ML. Systematic mapping studies on RE for ML identi-
fied new contributions in this area, including approaches, checklists, guidelines,
quality models, classifications and evaluations of quality models, taxonomies,
and quality requirements [4,8,21]. Ahmad et al. investigated current approaches
for writing requirements for AI/ML systems, identified tools and techniques to
model requirements for AI/ML, and pointed out existing challenges and limi-
tations in this area [3]. Belani et al. identified and discussed RE challenges for
ML and AI-based systems, and reported that identifying NFRs throughout the
software lifecycle is one of the main challenges [6]. Heyn et al. used three use
cases of distributed deep learning to describe AI system engineering challenges
related to RE [10], including context, defining data quality attributes, human
factors, testing, monitoring and reporting.

RE for Vehicles and DAS: Significant research has been performed on RE
for vehicles. Liebel et al. identified challenges in automotive RE with respect to
communication and organization structure [13]. Pernstal et al. stated that RE
is one of the areas most in need of improvement at automotive original equip-
ment manufacturers (OEMs), and also identified the ability to communicate via
requirements as important [16]. Allmann et al. also noted requirements com-
munication as a major challenge for OEMs and their suppliers [5]. Mahally et
al. identified that requirements are the main enablers and barriers of moving
towards Agile for automotive OEMs [14].

Research has also looked specifically at RE for AD, e.g., providing an
overview of AD RE techniques [19], Riberio et al. identified AD RE challenges
addressed by the literature, and identified the languages and description styles
used to describe AD requirements, with special attention given to NFRs [17].

2 A recent submission has used the same study data, but focuses on the annotation,
data, and ecosystems and business themes [9].

192 K. M. Habibullah et al.

Heyn et al. investigated challenges with context and ODD definition in ML-
enabled perception systems [11], including a lack of standardisation for context
definitions, ambiguities in deriving ODDs, missing documentation, and lack of
involvement of function developers while defining the context. Ågren et al. iden-
tified six aspects of RE that impact automotive development speed, moving
toward AD [2].

3 Methodology

Our study is guided by the following research questions:

RQ1: What are the RE-related topics of interest for perception systems for
DAS?
RQ2: What challenges are experienced in RE for perception systems for
DAS?

To address these questions, we conducted seven group interviews with 19 expert
participants from five companies that are currently working in ML-based per-
ception systems for DAS. Figure 2 gives an overview of the interview study.

Data Collection: We used semi-structured group interviews with a set of pre-
determined open-ended questions3 to keep enough freedom to add follow-up
with additional questions. The interviews were conducted between December
2021 and April 2022 via Microsoft Teams, and lasted between 1 h and 30 min to
2 h. We recorded all interview sessions with the permission of all participants;
then transcribed, and anonymized the recordings for analysis. At least three
researchers were present in each interview, with the same two researchers in all
interviews to maintain consistency.

Table 1. Overview of conducted interviews (same as [9])

Interview Field of work Participants

A Object detection Product owner

B Autonomous Driving
Product owner, test engineer, ML engineer,
software developer

C Vision systems
System architect, product owner,
requirement engineer, deep learning engineer

D AD and ADAS System engineer, manager AD

E Testing and validation AD
System architect, two product owners,
compliance officer, data scientist

F Data annotations AI engineer, data scientist
G Autonomous Driving System safety engineer

3 The interview guide can be found at: https://doi.org/10.7910/DVN/HCMVL1.

https://doi.org/10.7910/DVN/HCMVL1

RE for Automotive Perception Systems 193

A summary of the participants is shown in Table 1. We chose participants who
posses experience with ML, perception systems for DAS, software and systems
engineering, RE, or data science, or who were working in the DAS industry. The
sampling method was a mix of purposive, convenience, and snowball sampling.
We sent open calls to the Swedish automotive industry, and our known contacts,
then we asked the interviewees for further contacts. Our participants work with
different aspects of DAS.

Fig. 2. Overview of interview study.

We started by asking for demographic information about the participants. We
then showed them Fig. 1, asking for their feedback and using the figure to ground
further discussions about how functional requirements relate to requirements on
data and data annotation. We asked further questions about their requirements
documentation, safety issues, and quality. Although we carefully chose interview
participants, the opinions of the individual interviewees do not necessarily reflect
the overall opinion of their companies. Due to the sensitive nature of information
provided by interview participants and their respective companies, we are unable
to disclose the raw interview data or specific details about ways of working.
Finally, in a 2.5-hour workshop with roughly 20 participants, many of whom were
interviewees, we presented and discussed our findings with illustrative quotes.

Data Analysis: We applied thematic analysis, as per Saladana [18]. We used a
mixed form of coding, where we started with a number of high-level deductive
codes based on the interview questions, then we started inductive coding, adding
new codes while going through the transcripts. At least three of the researchers
worked together to code each of the transcribed interviews. We observed sat-
uration after five interviews, as not many new inductive codes emerged. In a
second round of coding, a new group of at least two researchers reviewed the
interview transcripts and verified the codes. Finally, we used pattern coding to
identify emerging themes and sub-categories. To illustrate our points, we use a
number of interview quotes. For increased anonymity, participants are assigned
a random identifier, such that P1 does not necessarily match to interview A. In
this paper, we focus on findings specifically in the RE theme. Heyn et al. have
analyzed the ecosystem and business, data, and annotation themes [9]. Further
themes will be analyzed in future work.

194 K. M. Habibullah et al.

4 Results

Based on the thematic analysis, we divide the RE theme into sub-themes—
“Operational Design Domain (ODD), “Scenarios and Edge Cases”, “Require-
ments Breakdown”, “Traceability” and “Requirements Specification”—and
important topics within each sub-theme. The sub-themes and topics are summa-
rized in Fig. 3. Our themes reflect both RE topics and challenges, addressing both
RQ1 and RQ2. We also note how many interviewees discussed the sub-theme.
These sub-themes and topics answer RQ1, identifying relevant RE-related top-
ics in perception systems. We use these results to identify which topics are, or
contain, specific challenges (RQ2) in Sec. 5.

Fig. 3. Mind map illustrating relevant RE topics and challenges for DAS perception
systems.

4.1 Operational Design Domain (ODD)

An ODD is a description of a domain that a DAS will operate in—e.g., the road
or weather conditions. As part of RE, one needs to define not only requirements,
but assumptions about the domain, context, and scope of operation. Operational
context and scope for perception systems is particularly important as the inten-
sity of hazards depends upon the current ODD. ODD-related topics came up in
all interviews and were discussed by 63% of the participants.

ODD Definition: ODDs should be captured as part of the requirements spec-
ification. Several interviewees mentioned ODD detection—where the system
detects that a certain ODD is currently applicable for a DAS function—and
ODD exit detection—when the ODD is no longer applicable. ODD detection
requires information on what to detect and detection accuracy. For example, on
highways, DAS needs to detect different dynamic objects than in urban areas.

ODD and Standards: Interviewees state that ODDs are critical, and therefore,
it is desirable to follow a standard or process for specifying and defining ODDs.
This need has been recognized and new initiatives for the definition of ODD

RE for Automotive Perception Systems 195

exist, e.g., the interviewees mention the PAS-1883 standard, and we are aware
of other standards (e.g., ISO 21448/SOTIF) that include ODDs.

ODD and Data Distribution: One interviewee stated that data distribution
requirements are highly influenced by ODDs. For example, camera data can be
classified according to descriptions in the ODD, and this mapping can reveal
missing data, driving further data collection. As it is not feasible to collect data
in all possible contexts, it is necessary to have an efficient sampling process
covering the most common ODDs.

“If the performance of the model is not good enough in some part of the ODD,

for instance during the night or snow weather and so on, then we can select more

samples from those areas.” - P16

Another interviewee pointed out that although ODDs drive data collection,
collecting certain types of data required by the ODD can still be very difficult.

“... mining for specific use cases. For instance, it is not easy to collect data that

contains animals in it. You need some way to mine and find those specific frames

which will be sent for annotations and then be used during training.” - P16

4.2 Scenarios and Edge Cases

Several interviewees described how scenarios are crucial as part of the require-
ments specification process. In this context, scenarios describe specific opera-
tional paths and conditions for a vehicle, and one ODD may include a number
of scenarios. As such, although there are links to scenario-based requirements
methods[20], there are also clear differences. Scenarios and edge cases came up
in 86% of interviews and were discussed by 58% of participants.

Scenario Completeness: It is important that perception systems perform cor-
rectly and that the vehicle handles failures in as many scenarios as possible. As
such, scenarios can help in requirements derivation.

“If we refer to the classic system engineering process, I think nowadays it’s quite

hard ... we are trying to use the scenario to derive the requirements. If we ...

see the features or the distribution of the scenarios based on the data from the

real world. Then we can derive the high-level requirements based on that data, the

scenario database.” - P4

One interviewee stressed the difficulty of defining and assessing coverage.
“How do you define coverage? ... What is the scenario space for pedestrian chil-

dren? Is it based on how the area you have annotated looks inside of your bounding

box? Do you parameterize it on the size of the bounding box, parameterized on con-

ditions around you? How would you divide that space and define it in a way that

allows even measures? Have I covered not just enough children, but also enough

variety of children? ” - P18

Scenarios and Annotation: Even if all important scenarios are reflected in
training data, annotation errors may result in unsafe behavior—e.g., a perception
system may recognize a human as a tree during a snowy or rainy day.

196 K. M. Habibullah et al.

“We’ll pick out some scenarios that we feel (are) likely not correct, for instance,

if it’s a rainy night, then maybe the annotator is not annotating (people) as accu-

rately as in the day.” - P8

Scenarios as Part of Requirement Refinement: Our results show that
testing through scenarios enables iterative requirements refinement. Engineers
iteratively refine their expectations of correct behavior by examining scenarios
and capturing observations from simulation or in the field.

“... we have to learn through testing, so probably it will start with some rough

set of requirements, some obvious setting requirements. Then we will, through

real-world testing, discover and learn exactly how we want to behave. ” - P2

“It seems like a test-driven development process ... we have the scenarios to drive

the development and give more input and also we get the benefit of testing.” - P4

Edge Cases: Interviewees stated that, in addition to normal scenarios, it is
crucial and challenging to deal with edge cases. The interviewees used subtly
different terms, such as edge cases, rare cases, and cases that occurred very
infrequently. We use the term “edge cases” for simplicity. These cases may be
missed by studying data distributions, but are very critical to ensure safety.

“The cars ... will end up in situations that no one could predict, that we’ve never

seen before, and somehow we need, even in this situation, one individual car

needs to perform better than a human driver, and human drivers are real good at

handling edge cases. The neural networks will not do that.” - P13

Edge Cases and Annotation: Edge cases cause issues by creating confusion
among annotators. Data from edge cases is often annotated inconsistently. The
topic of annotation is explored in more detail by Heyn et al. [9].

“We label whether a vehicle is in our lane or not. But how should you? You can

think of so many corner cases when you are out driving. When you are doing a

lane change. Which lane are you in then, and how would you then place all the

other vehicles or lane lines? Maybe there are double lane lines and which is valid

and which is not? This leads to a lot of confusion among annotators.” - P17

Scenarios, Edge Cases and Data Distribution: One interviewee pointed
out that scenarios, and especially rarer edge cases, are important for driving
data collection efforts as part of having an effective data distribution. How well
edge cases are covered can be an important development metric.

Edge Cases and Simulation: Interviewees stated that collecting data points
for particular scenarios from the real world is necessary, but is particularly diffi-
cult for edge cases. This makes simulation challenging, as for safety-critical edge
cases, practitioners have difficulty safely gathering enough data to run realis-
tic simulations. This makes the process of iterative requirements refinement, as
described previously, difficult for requirements associated with edge cases.

RE for Automotive Perception Systems 197

4.3 Requirements Breakdown

Requirements breakdown can involve both refining or decomposing requirements.
Requirements breakdown was brought up as a topic in all interviews and was
discussed by 90% of participants.

The Need for Requirements Breakdown: We see evidence that a tradi-
tional requirements breakdown is followed for perception systems. At least one
participant spoke of splitting the problem to reduce complexity.

“We need to split the problem. We can’t do all work at the same time on the

complete problem.” - P12

Another participant described an architectural-oriented breakdown.
“Let us say you don’t want to collide with an object more than once in a billion

hours. This is your top requirement and then you need some kind of architecture

or idea of what your system looks like. That should realize this safety goal. This is

where we typically come up with a functional architecture, and we start to break

down the requirements of the parts of that functional architecture. Then we work.

We refine it. The functional architecture becomes a system or logical architecture

and we break it down into smaller and smaller pieces.” - P7

Others describe the importance of separation of high-level requirements from
technical requirements to have an upper layer that is resilient to change.

“To me, at least the function level will be the same in 100 years because there’s

no need that you change it. If your function doesn’t change, because today you

satisfy that function by combustion engine, in the next 50 years by electric, and

in the next, I don’t know, 100 years by something more intelligent ... By changing

your technical system level specifications, you still can satisfy your function. ” -

P19

Challenges with Requirements Breakdown: Participants commented on
the challenges of connecting high-level requirements to low-level requirements
and general challenges with requirements breakdown in this context.

“I would say we’re working with that challenge and, not that it’s an easy one, but

we do believe that it’s necessary to connect the top-level requirements or the quality

of the function, and to map that to quantitative or performance requirements on,

for example, perception, precision, and control.” - P13

“What you can do is interact the most closely with ... some component, maybe

in perception, and these are the ones who would place direct requirements on

the previous component, so it is to me a bit of a hierarchical model to approach

the difficulties in breaking down the final safety goal to the early stages in our

processing chain. I think one tricky thing is, that it’s a hierarchical way in some

ways, but you also have to go in both directions in that hierarchical model. ” - P6

Several interviewees report that traditional requirements breakdowns cannot
be easily applied.

198 K. M. Habibullah et al.

“For sure, we will not start with the classical software approach, where you start

with some requirements and then keep breaking those down and through the V-

Model because it will be impossible to capture the behavior of autonomous vehicle

with requirements.” - P2

Breakdown to Data and Annotation Requirements: Interviewees
explained that, although linking functional requirements to system accuracy
is often possible, breaking functional requirements into data and annotation
requirements is more difficult.

“ Working with system level requirements, I can look at function requirements

and figure out roughly what kind of accuracy we need ... That does not necessarily

mean that I can tell how precisely annotation has to be, because I need to know

how the software works to figure that out. Another translation needs to happen

where I gave my requirements to the developers and they have to figure out what

kind of accuracy they need from the data to meet the system requirements and

with so many translations on the way, it is easy for things to get lost somewhere.”

- P6

“...it is difficult to write good requirements on data quality and annotation pre-

ciseness and have those links all the way up to feature requirements (Fig. 1).

Which I think is because of the dimensionality of the problem. The input space is

so enormous that it’s really tricky to get a single set of requirements there.” - P15

Breakdown and Collaboration: Challenges arise when teams collaborate to
specify quality requirements.

“ Creating one function would involve multi-team collaboration usually. I guess it’s

not as easy as evaluating your own system when other people are kind of involved,

so you have to come up with scenarios and things to test your algorithms with

and could try to come up with a plan. ” - P4

Frequent and direct interaction with the stakeholders can reduce this diffi-
culty and help engineers to identify the requirements. In this case, stakeholders
have internal roles in the perception system development.

“I think it is a lot of interaction with direct stakeholders in the end ... because

the direct consumers of whatever you are producing know exactly what they need

to fulfill their own requirements from their own stakeholders. So the negotiation

across these interfaces is where the most interaction happens. ” - P9

Gap Between High-level Requirements and ML: When breaking down
high-level requirements to very specific requirements on the ML-based perception
system, results show that traditional RE practices are able to be applied up
to a certain point - even though challenging. However, the breakdown for the
ML based components is particularly challenging. As such, there are boundaries
within the system where requirements methods change.

“If we talked about some other requirements or specifications not for the AD stack.

... those things still can follow the traditional way for critical system. ... if we

distinguish those two parts, ... for the black box or part or AD business part, it’s

hard to follow, but for the rest we still can leverage the classic knowledge.” - P4

RE for Automotive Perception Systems 199

We see that it is difficult to specify requirements for the whole perception
system. However, there are often still requirements—in terms of various perfor-
mance metrics—at a high-level.

“ If we say the requirements were specified for the entire AD stack, I think it’s

quite hard to have very precise or detailed specifications for all functions, but

actually, we have some high-level metrics like safety, performance, functionality,

or traffic comfort metrics ... We have something, but they are very different from

the traditional understanding of the specification.” - P4

Redundancy in Requirements Satisfaction: One interviewee described how
requirements are allocated to ensure redundancy in the solution.

“We typically try to break down the problem to come up with redundant solutions.

You would have one algorithm using one sensor, which has some capacity to detect

the pedestrian, and then use another algorithm and another algorithm in parallel.

And you use another sensor and ... decompose the problem such that ... it’s very

unlikely that all of them would miss this pedestrian. That’s a way to try and get

reasonable requirements on every perception component.” - P6

ML Volatility: One interview pointed out, due to dependencies between com-
ponents and the volatile nature of ML, changes in the ML model can cause
drastic changes in other parts of the system.

“ People sometimes start setting requirements on sensors, and then start setting

requirements on data, and calibration accuracy, and then also on annotation,

preciseness, and that somehow should influence the model accuracy. Maybe one

problem we have with ML is that, if there are things slightly off, it cannot just

lead to a slight degradation, but to complete degradation of the entire system.” -

P17

4.4 Traceability

37% of interviewees, in 57% of the interviews, brought up points related to
traceability in perception systems.
ML Makes Traceability More Challenging: Known traceability challenges
are exacerbated by the use of ML and associated data. Interviewees described
that when systems or modules fail to meet particular key performance indicators
(KPIs), tracing the source of the issue is difficult due to the combination of ML
models and traditional code. Traceability was discussed in four out of our seven
interviews and by seven out of 19 participants.

“I think what is important at the end is the KPIs on the rightmost features of the

figure (Fig. 1). Then if you want to track down why it is not working, it’s not

very easy to find which module is not working as supposed to, or maybe it works,

but in a combination of something else, it creates some kind of strange behavior.

” - P14

Traceability Must Account for More Elements: It is important that trace-
ability be maintained not just between code and requirements, but also with ML
elements—e.g., models and datasets—that determine the overall functionality.

200 K. M. Habibullah et al.

“ I think it is important to keep track of exactly which data was used to train

the model, and be able to also show that to the general public if needed, right? ...

having traceability all the way through development is something we aim for.” -

P8

Typically, trace links would link to typical elements like requirements and
safety goals, but now they should also link to scenarios.

“I don’t want to say something that is wrong, you need this traceability, and then

when you trace back you see that, OK, I had a safety goal that was talking about

this specific scenario. ” - P19

4.5 Requirements Specification

Aspects of documentation and requirements specification were discussed in all
interviews, and by 68% of participants.
Unachievable Requirements Specifications: Two interviewees mentioned
that sometimes clients provide unachievable requirements, even though require-
ments specifications are clear and precise.

“Sometimes clients come to us with a very well written set of requirements, like

we want this annotator and want this precision or accuracy ... Then they send

us data. But when we start looking at the data, it turns out that, given this data,

these requirements are basically impossible to meet.” - P18

Difficulties in Specifying Quantitative Requirements: Due to confiden-
tiality, interviewees were not able to elaborate on specific target levels for quan-
titative requirements. However, they did reflect generally about the difficulty in
determining quantitative quality targets.

“... for model accuracy, what does success look like in functional safety? If you

can recognize 99% rebounding boxes of possessions, is it good enough? If you have

a recall of 100%, but your precision is only 50%, would that be good enough?” -

P17

Specification Process: One interviewee emphasized that documentation of the
rationale and goals of the project can serve as a form of requirement specification.

“I think it’s valuable to actually document after what principles you’re working,

document the problem you’re trying to solve and that is basically a set of require-

ments, even if they’re not necessarily traceable upwards all the way.” - P15

Specification Changes: The uncertain and highly iterative nature of percep-
tion systems and their development environment means that specifications are
particularly prone to change.

“Requirements at any level are not something that is static. They should reflect

your current best interpretation. These things can change because your under-

standing or your development process changes or the environment changes because

there are suddenly new demands on how something is supposed to perform or you

learn something new about the system or its environment. ” - P15

RE for Automotive Perception Systems 201

Difficulties in Data and Annotation Specification: One interviewee said
that specifying data requirements is difficult and different from functional spec-
ification, as it is hard to identify features and ensure data quality upfront.

“It’s very different how you write a data specification ... it’s hard to know what

the future expects and what type of classes we want and how we want to combine

certain objects ... we future proof our datasets quite well by specifying. We do

specify a lot of classes.” - P5

Another interviewee reported that it is difficult to specify quality (non-
functional) requirements on data and annotation, and to understand how qual-
ities affect model performance.

“ I work a lot with image quality before any ML is involved. Even that is very diffi-

cult to quantify. We can have very much right objectively measurable requirements

on image quality, sharpness. Then how those translate to the actual performance

of a ML algorithm is not at all linear.” - P16

Another participant described challenges in specifying requirements for data
annotation when dealing with external partners. It is difficult to have an upfront,
detailed specification of data classes and accuracy levels. Instead, data specifi-
cation needs to be developed iteratively and experimentally with suppliers.

5 Summary and Discussion

RE Topics (RQ1): We have identified a number of RE topics in Sec. 4, as sum-
marized by Fig. 3. These topics can be seen as a sort of check-list when working
with ML-based perception systems—a list of issues that should be considered.

Our interviewees emphasize that the definition and limits of ODDs are an
integral part of perception systems, and these ODDs have important impacts
on data requirements and collection, confirming findings in Heyn et al. [11].
Similarly, perception systems development relies heavily on the use of scenarios
and associated edge cases. Such scenarios play a key role in dictating annotation,
data collection and simulation. As part of the RE process for perception, it is
particularly important to capture edge case scenarios, and these edge cases also
play an important role in annotation, simulation, and data collection.

RE for Perception System Challenges (RQ2): Our results indicate that
ODD detection and ODD exit detection are challenging, as this requires
information not only about what to detect in the environment, but also how to
detect it and the accuracy of the detection. In addition, data requirements
are highly influenced by the content of an ODD, therefore ODDs can be used
to evaluate whether a data distribution is sufficient for good ML model perfor-
mance. However, it is not always easy to collect the data specified by ODDs.
Heyn et al. also emphasized the importance of ODDs in DAS, and noted the lack
of a common definition for ODDs [10]. Our participants go further and mention
the need for ODD standardization (and efforts in that regard).

One major challenge is that simulations should reflect realistic scenarios,
echoed by Acuna et al. [1]. For ensuring safe perception, the collected data and

202 K. M. Habibullah et al.

scenarios must be thorough, and the perception system must avoid failure in all
scenarios. In addition to covering normal scenarios, it is important to specify
edge cases among scenarios, which are then used to determine data distribu-
tions. However, edge cases introduce challenges as they create confusion among
annotators and are challenging to test in reality due to safety concerns.

Breaking down requirements for data and annotations can be very diffi-
cult, and additional challenges are introduced due to requirements dependencies
and the need for multiple teams to collaborate. In general, we believe that the
gap between standard RE methods and ML components is both a tech-
nical gap and a gap in training and backgrounds, as the ML components are
often engineered by data scientists without a software background.

Difficulties in breakdown, ML opaqueness, as well as the the introduction of
more elements to trace (e.g., ODDs, scenarios, training data), make it difficult to
establish traceability. These challenges are in addition to the known challenges
with motivating and using traceability in practice [23].

Creating specifications for data and annotations is challenging, as it is
difficult to have an upfront specification for data classes, e.g., pedestrians and
crosswalks. Furthermore, sometimes ML components are assigned unrealistic and
unachievable requirements. Although requirements change is a frequently
acknowledged RE problem [12], with perception systems, the level of uncer-
tainty and change is particularly high due to uncertainty about the system,
including ML, and the environmental targets. Quantifying quality require-
ments (e.g., accuracy) is also particularly challenging in perception systems,
echoing the results of Vogelsang and Borg [22].

Some of these challenges are relatively new from an RE perspective (e.g.,
ODD detection, missing edge case), while others have been long recognized
(e.g., traceability [23], specification changes [12]). As mentioned, three addi-
tional themes from the same study are reported and analyzed by Heyn et al. [9].
Although the article focuses on different themes, the qualitative topics covered
in that work and our work here have some overlap, particularly in topics related
to data and annotation. However, here, the topics of data and annotation are
approached from an RE perspective, while the other article takes an ecosystems
and process view on topics and challenges related to perception systems in DAS.

Although the focus of this work has been on perception systems, we believe
that many of the RE practices and challenges found would apply more generally
to other domains reliant on ML. For example, challenges breaking down spec-
ification would hold due to the volatility and opaqueness of ML. Further work
should contrast RE challenges and practices in other ML-enabled domains.

5.1 Threats to Validity

Internal Validity: We internally peer-reviewed the interview guide and con-
ducted a pilot interview to improve the guide and process. We sent a prepara-
tion email to all the interview participants with the details and purpose of the
interview study. To maintain consistency in the interview process, at least three
authors conducted each interview, with two authors present in all interviews.

RE for Automotive Perception Systems 203

All interviews were conducted in English, and the auto-generated transcripts
were ‘fixed’ by authors by listening to audio recordings and correcting any tran-
scription errors. Note that the working language of each company was English,
so the language should not have created barriers.

Although qualitative coding always comes with some bias, we mitigated this
threat by following established literature [18], coding in multiple rounds, using
inductive and deductive codes, and having multiple authors participate in each
round of coding, with in-depth discussion on code meanings and assignments.

External Validity: We used a mixture of purposive and snowball sampling.
As our study needed a certain set of expertise to answer our questions, we
could not conduct random sampling, using our networks and their contacts.
Still, due to the size of the study, with participants covering a wide variety of
roles with varying experience levels, covering differing company roles and sizes in
the perception system ecosystem, we believe we have a relatively representative
sample. Furthermore, we argue that we reached a sufficient point of saturation
with our interview data, as we noticed a sharp decline in emerging codes after
analyzing the fifth group interview.

Note that one cannot link participants to interviews and companies, this is
done deliberately to protect the anonymity of our participants. Although this
may affect transferability of our results, we feel this level of anonymity does
not greatly hurt our results. Though our study results are limited to perception
systems in DAS, we argue that some findings can apply to other safety-critical
or perceptions systems. This applicability should be explored in future studies.

6 Conclusion

Our study investigated RE practices and challenges during the development of
PS. We interviewed 19 participants from five companies and identified a number
of RE practices and challenges that impact heavily the functional safety assur-
ance of PS for DAS. The results of this study suggest future research directions
in RE and ML to mitigate the challenges practitioners are facing.

Acknowledgements. Support for this project was provided by Vinnova pre-study
2021-02572. We thank all participants.

References

1. Acuna, D., Philion, J., Fidler, S.: Towards optimal strategies for training self-
driving perception models in simulation. Adv. Neural. Inf. Process. Syst. 34, 1686–
1699 (2021)

2. Ågren, S.M., Knauss, E., Heldal, R., Pelliccione, P., Malmqvist, G., Bodén, J.:
The impact of requirements on systems development speed: a multiple-case study
in automotive. Requirements Eng. 24(3), 315–340 (2019)

3. Ahmad, K., Bano, M., Abdelrazek, M., Arora, C., Grundy, J.: What’s up with
requirements engineering for artificial intelligence systems? In: 2021 IEEE 29th
International Requirements Engineering Conference(RE), pp. 1–12. IEEE (2021)

204 K. M. Habibullah et al.

4. Ali, M.A., Yap, N.K., Ghani, A.A.A., Zulzalil, H., Admodisastro, N.I., Najafabadi,
A.A.: A systematic mapping of quality models for AI systems, software and com-
ponents. Appl. Sci. 12(17), 8700 (2022)

5. Allmann, C., Winkler, L., Kölzow, T., et al.: The requirements engineering gap in
the oem-supplier relationship. J. Univer. Knowl. Manage. 1(2), 103–111 (2006)

6. Belani, H., Vukovic, M., Car, Ž.: Requirements engineering challenges in build-
ing AI-based complex systems. In: 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW), pp. 252–255. IEEE (2019)

7. Borg, M., et al.: Safely entering the deep: A review of verification and validation
for machine learning and a challenge elicitation in the automotive industry. arXiv
preprint arXiv:1812.05389 (2018)

8. Habibullah, K.M., Gay, G., Horkoff, J.: Non-functional requirements for machine
learning: An exploration of system scope and interest. In: 2022 IEEE/ACM 1st
International Workshop on Software Engineering for Responsible Artificial Intelli-
gence (SE4RAI), pp. 29–36. IEEE (2022)

9. Heyn, H.M., et al.: Automotive perception software development: Data, annota-
tion, and ecosystem challenges, (Submitted)

10. Heyn, H.M., et al.: Requirement engineering challenges for AI-intense systems
development. In: 2021 IEEE/ACM 1st Workshop on AI Engineering-SE for AI
(WAIN), pp. 89–96. IEEE (2021)

11. Heyn, H.-M., Subbiah, P., Linder, J., Knauss, E., Eriksson, O.: Setting AI in con-
text: a case study on defining the context and operational design domain for auto-
mated driving. In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol.
13216, pp. 199–215. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
98464-9 16

12. Jayatilleke, S., Lai, R.: A systematic review of requirements change management.
Inf. Softw. Technol. 93, 163–185 (2018)

13. Liebel, G., Tichy, M., Knauss, E., Ljungkrantz, O., Stieglbauer, G.: Organisation
and communication problems in automotive requirements engineering. Require-
ments Eng. 23(1), 145–167 (2018)

14. M. Mahally, M., Staron, M., Bosch, J.: Barriers and enablers for shortening software
development lead-time in mechatronics organizations: A case study. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of SE, pp. 1006–1009 (2015)

15. Mallozzi, P., Pelliccione, P., Knauss, A., Berger, C., Mohammadiha, N.:
Autonomous vehicles: state of the art, future trends, and challenges. In: Auto-
motive Systems and SE, pp. 347–367 (2019)

16. Pernst̊al, J., Gorschek, T., Feldt, R., Florén, D.: Software process improvement in
inter-departmental development of software-intensive automotive systems – a case
study. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) PROFES
2013. LNCS, vol. 7983, pp. 93–107. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39259-7 10

17. Ribeiro, Q.A., Ribeiro, M., Castro, J.: Requirements engineering for autonomous
vehicles: a systematic literature review. In: Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing, pp. 1299–1308 (2022)

18. Saldaña, J.: The coding manual for qualitative researchers. The coding manual for
qualitative researchers, pp. 1–440 (2021)

19. Staron, M.: Requirements engineering for automotive embedded systems. In: Auto-
motive Systems and Software Engineering, pp. 11–28. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-12157-0 2

http://arxiv.org/abs/1812.05389
https://doi.org/10.1007/978-3-030-98464-9_16
https://doi.org/10.1007/978-3-030-98464-9_16
https://doi.org/10.1007/978-3-642-39259-7_10
https://doi.org/10.1007/978-3-642-39259-7_10
https://doi.org/10.1007/978-3-030-12157-0_2

RE for Automotive Perception Systems 205

20. Sutcliffe, A.: Scenario-based requirements engineering. In: Proceedings of 11th
IEEE International Requirements Engineering Conference 2003, pp. 320–320. IEEE
Computer Society (2003)

21. Villamizar, H., Escovedo, T., Kalinowski, M.: Requirements engineering for
machine learning: A systematic mapping study. In: 2021 47th Euromicro Con-
ference on SE and Advanced Applications (SEAA), pp. 29–36. IEEE (2021)

22. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: Perspec-
tives from data scientists. In: 2019 IEEE 27th International Requirements Engi-
neering Conference on Workshops (REW), pp. 245–251. IEEE (2019)

23. Wohlrab, R., Steghöfer, J.P., Knauss, E., Maro, S., Anjorin, A.: Collaborative
traceability management: Challenges and opportunities. In: 2016 IEEE 24th Inter-
national Requirements Engineering Conference (RE), pp. 216–225. IEEE (2016)

An Investigation of Challenges
Encountered When Specifying Training
Data and Runtime Monitors for Safety

Critical ML Applications

Hans-Martin Heyn1,2(B) , Eric Knauss1,2 , Iswarya Malleswaran1,
and Shruthi Dinakaran1

1 Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
hans-martin.heyn@gu.se

2 University of Gothenburg, SE-405 30 Gothenburg, Sweden

Abstract. [Context and motivation] The development and opera-
tion of critical software that contains machine learning (ML) models
requires diligence and established processes. Especially the training data
used during the development of ML models have major influences on
the later behaviour of the system. Runtime monitors are used to pro-
vide guarantees for that behaviour. [Question/problem] We see major
uncertainty in how to specify training data and runtime monitoring for
critical ML models and by this specifying the final functionality of the
system. In this interview-based study we investigate the underlying chal-
lenges for these difficulties. [Principal ideas/results] Based on ten
interviews with practitioners who develop ML models for critical appli-
cations in the automotive and telecommunication sector, we identified 17
underlying challenges in 6 challenge groups that relate to the challenge of
specifying training data and runtime monitoring. [Contribution] The
article provides a list of the identified underlying challenges related to
the difficulties practitioners experience when specifying training data
and runtime monitoring for ML models. Furthermore, interconnection
between the challenges were found and based on these connections rec-
ommendation proposed to overcome the root causes for the challenges.

Keywords: Artificial intelligence · Context · Data requirements ·
Machine learning · Requirements engineering · Runtime monitoring

1 Introduction

With constant regularity, unexpected and undesirable behaviour of machine
learning (ML) models are reported in academia [9,24,26,53,54], the press, and

This project has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 957197.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 206–222, 2023.
https://doi.org/10.1007/978-3-031-29786-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_14&domain=pdf
http://orcid.org/0000-0002-2427-6875
http://orcid.org/0000-0002-6631-872X
https://doi.org/10.1007/978-3-031-29786-1_14

Challenges When Specifying Data and Runtime Monitors 207

by NGOs1. These problems become especially apparent, and reported upon,
when ML models violate ethical principles. Racial, religious, or gender biases
are introduced through a lack of insight into the (sometimes immensely large
set of) training data and missing runtime checks for example in large language
models such as GPT-3 [1], or facial recognition software based on deep learning
[37]. Unfortunately, improving the performance of deep learning models often
requires an exponential growth in training data [3]. Data requirements can help
in preventing unnecessarily large and biased datasets [50]. Due to changes in the
environment, ML models can become “stale”, i.e., the context changes so signif-
icantly that the performance of the model decreases below acceptable levels [5].
Runtime monitors collect performance data and indicate the need for re-training
of the model with updated training data. However, these monitors need to be
specified at design time. Data requirements can support the specification of run-
time monitors [7]. The lack of specifications becomes specifically apparent with
ML models that are part of critical software2 because it is not possible to estab-
lish traceability from system requirements (e.g., functional safety requirements)
to requirements set on the training data and the runtime monitoring [36].

Fig. 1. Overview of identified challenge categories

Scope and Research Questions

The purpose of this study is to highlight current challenges experienced by prac-
titioners in specifying training data and runtime monitoring for ML in safety
critical software.

The paper contributes a practitioner’s point of view on the challenges
reported in academic literature. The aim is to identify starting-points for a future
engineering research on the use of runtime monitors for critical ML systems. The
following research questions guided this study:

1 Non-governmental organisations, e.g., https://algorithmwatch.org/en/stories/.
2 We define critical software as software that is safety, privacy, ethically, and/or mission

critical, i.e., a failure in the software can cause significant injury or the loss of life,
invasion of personal privacy, violation of human rights, and/or significant economic
or environmental consequences [31].

https://algorithmwatch.org/en/stories/

208 H.-M. Heyn et al.

RQ1: What are challenges encountered by practitioners when specifying training
data for ML models in safety critical software?

RQ2: What are challenges encountered by practitioners when specifying runtime
monitors especially in relation to fulfilling safety requirements?

Figure 1 shows the main themes we found in answering the research questions.
Concerning RQ1, the interviewees reported on several problems: the data selec-
tion process is nontransparent and guidelines especially towards defining suitable
measures for data variety are missing. There are no clear context definitions that
help in defining data needs, and current safety standards provide little guidance.
Concerning RQ2, we found that the problem of defining suitable metrics and
the lack of guidance from safety standards also inhibits the ability to specify
runtime monitors. Furthermore, practitioners reported on challenges regarding
explainability of ML decisions, and the processing and memory overhead caused
by runtime monitors in safety critical embedded systems.

The remaining sections of this paper are structured as follows: Sect. 2 outlines
and argues for the research methods of this study; Sect. 3 presents the results
amd answers to the research questions; Sect. 4 discusses the findings, provides
recommendations to practitioners and for further research, identifies related lit-
erature, elaborates on threats to validity, and provides a conclusion.

2 Research Method

We applied a qualitative interview-based survey with open-ended semi-
structured interviews for data collection. Following the suggestions of Creswell
and Creswell [13] the qualitative study was conducted in four steps: Prepara-
tion of interviews, data collection through interviews, data analysis, and result
validation.

Preparations of Interviews. Based on the a-priori formulated research ques-
tions, two of the researchers of this study created an interview guide3 which was
validated and improved by the remaining two researchers. The interview guide
contains four sections of questions: the first section includes questions about
the interviewees’ current role, background and previous experiences. The second
section focuses on questions that try to understand challenges when specifying
and selecting training data for ML models and how training data affect the per-
formance of these models. The third section investigates challenges when ML
models are incorporated in critical systems and how they affect the ability to
specify training data. The fourth section concentrates on the run time monitor-
ing aspect of the ML model and contains questions on challenges when specifying
runtime monitors.

Sampling Strategy: We chose the participants for this study purposefully using
a maximum variation strategy [14]. We were able to recruit interviewees from
3 The interview guide is available at https://doi.org/10.7910/DVN/WJ8TKY.

https://doi.org/10.7910/DVN/WJ8TKY

Challenges When Specifying Data and Runtime Monitors 209

five different companies, ranging from a local start-up to a multinational world
leading communication company. An overview is given in Table 1.

A selection criteria for the company was that they must work with safety-
critical systems and ML. Within the companies we tried to find interview can-
didates with different roles and work experiences to obtain a view beyond the
developers’ perspective. Besides function developers and ML model developers,
we were interested in interviewing requirement engineers and product / func-
tion owners because they represent key roles in deriving system or function
specifications. We provided the companies with a list of roles that we identi-
fied beforehand as interesting for interviewing4. Additionally, we interviewed
two researchers from academia who participate in a joint industry EU Horizon
2020 project called VEDLIoT5. Both researchers worked also with ML models in
industry before. Therefore, they could provide insights into both the academic
and the industry perspective. A list of the ten interviewees for this study is
provided in Table 2.

Table 1. Companies participating in the study

Company Area of operations Employees Countries

1 Telecommunication networks > 10.000 World

2 Automotive OEM > 10.000 World

3 Automatic Driving > 1.000 Europe

4 Industrial camera systems > 1000 USA

5 Deep Learning optimisation for IoT > 100 Sweden

Table 2. Participants of the study

Inter-

viewee
Role Experience

A Researcher (Academic) Functional Safety for ADAS (5 years)

B Function developer Sensor and perception systems (20 years)

C Principal engineer ML model integration (10 years)

D ML model developer Distributed and edge systems (3 years)

E Function owner ADAS perception functions (8 years)

F
Function developer

and test engineer
Automatic driving systems (25 years)

G Data Scientist Distributed systems (12 years)

H Requirement Engineer Perception systems (8 years)

I Researcher (Academic) Neural Network development (8 years)

J Functional Safety Manager Sensor systems (20 years)

ADAS: Advanced Driver Assistance Systems

4 The list included functional safety experts, requirement engineers, product owners
or function owners, function or model developers, and data engineers.

5 Very efficient deep learning in the Internet of Things.

210 H.-M. Heyn et al.

Data Collection Through Interviews. All interviews were conducted
remotely using either the conference software Zoom or Microsoft Teams and
took between 60 - 90 min. The a-priori defined interview guide was only avail-
able to the interviewers and was not distributed to the participants beforehand.
Each participant was interviewed by two interviewers who alternated in asking
questions and observing. At the start of each interview, the interviewers provided
some background information about the study’s purpose. Then, the interview
guide was followed. However, as we encouraged discussions with the interviewees,
we allowed deviations from the interview guide by asking additional questions, or
changing the order of the questions when it was appropriate [30]. All interviews
were recorded and semi-automatically transcribed. The interviewers manually
checked and anonymised the results.

Data Analysis. The data analysis followed suggestions by Saldana [42] and
consisted of two cycles of coding and validation of the themes through a workshop
and member checking.

First Coding Cycle: Attribute coding was used to extract information about the
participants’ role and previous experiences. Afterwards, the two interviewers
independently applied structural coding to collect phrases in the interviews that
represent topics relevant to answering the research questions. The researchers
compared the individually assigned codes and applied descriptive coding with the
aim of identifying phrases that describe common themes across the interviews.

Theme Validation: In a focus group, the identified themes were presented and dis-
cussed. Thirteen researchers from both industry and academia in the VEDLIoT
project participated. Three of the participants also were interviewed for this
study. The aim of the focus group was to reduce bias in the selection of themes
and to identify any additional themes that the researchers might have missed.

Second Coding Cycle: After the themes were identified and validated, the second
coding cycle was used to map the statements of the interviewees to the themes,
and consequently identify the answers to the research questions. The second
cycle was conducted by the two researchers who did not conduct the first cycle
coding in order to reduce confirmation bias. The mapping was then confirmed
and agreed upon by all involved researchers.

Result Validation. Member checking, as described in [14, Ch. 9] was used
to validate the identified themes that answer RQ 1 and RQ 2. Additionally, we
presented the results in a 60 min focus group to an industry partner and allowed
for feedback and comments on the conclusions we drew from the data.

3 Results

During the first coding cycle, structural coding resulted in 117 statements for
RQ1 and 77 statements for RQ2. Through descriptive coding preliminary themes

Challenges When Specifying Data and Runtime Monitors 211

were found. The statements and preliminary themes were discussed during a
workshop. Based on the feedback from the workshop, 117 statements for RQ1
were categorised into eight final challenge themes and three challenge categories
relating to the challenge of specifying training data. Similar, the 77 original state-
ments for RQ2 were categorised into 13 final challenge themes in five challenge
categories relating to the challenge of specifying runtime monitoring. A total
of six challenge categories emerged for both RQs, out of which two categories
contain challenges relating to both training data and runtime monitoring spec-
ification, and three challenge themes base on statements from both RQs. The
categories and final challenge themes are listed in Table 3. Additionally, for each
challenge theme, we indicate the implication of the findings for requirements
engineering.

3.1 Answer to RQ1: Challenges Practitioners Experience When
Specifying Training Data

The interviewees were asked to share their experiences in selecting training data,
the influence of the selection of training data on the system’s performance and
safety, and any experiences and thoughts on defining specifications for training

Table 3. Challenge groups (bold) and themes found in the interview data. Data.:
Challenges related to specifying training data (RQ1). Monitor.: Challenges related to
specifying runtime monitoring (RQ2).

Relates to Related
ID Challenge Theme

Data. Monitor. Literature

1 Lack of explainability about ML decisions �
1.1 No access to inner states of ML models � [18]

1.2 No failure models for ML models � [51]

1.3 IP protection �
2 Missing conditions for runtime checks �
2.1 Unclear metrics and/or boundary conditions � [11,21,43]

2.2 Unclear measure of confidence � [17,34]

3 Missing guidelines for data selection � �
3.1 Disconnection from requirements � [16,42]

3.2 Grown data selection habits � [20,33]

3.3 Unclear completeness criteria � [49]

3.4 Unclear measure of variety � � [45,50]

4 Overhead for monitoring solution �
4.1 Limited resources in embedded systems � [38]

4.2 Meeting timing requirements �
4.3 Reduction of true positive rate �
5 Unclear design domain �
5.1 Design domain depends on available data � [6]

5.2 Uncertainty in context � [22]

6 Unsuitable safety standards � �
6.1 Focus on processes instead of technical solution � � [10]

6.2 No guidelines for probabilistic effects in software � [28,43]

6.3 Safety case only through monitoring solution � [31,46]

212 H.-M. Heyn et al.

data for ML. Based on the interview data, we identified three challenge groups
related to specifying training data: missing guidelines for data selection, unclear
design domain, and unsuitable safety standards

Missing Guidelines for Data Selection. Four interviewees reported on a
lack of guidelines and processes related to the selection of training data. A rea-
son can be that data selection bases on “grown habits” that are not properly
documented. Unlike conventional software development, the training of ML is an
iterative process of discovering the necessary training data based on experience
and experimentation. Requirements set on the data are described as discon-
nected and unclear for the data selection process. For example, one interviewee
stated that if a requirements is set that images shall contain a road, it remains
unclear what specific properties this road should have. Six interviewees described
missing requirements on the data variety and missing completeness criteria as a
reason for the disconnection of requirements from data selection.

“For example, we said that we shall collect data under varying weather conditions.

What does that mean?” - Interview B

“How much of it (the data) should be in darkness? How much in rainy conditions,

and how much should be in snowy situations?” - Interview F

Another interviewee stated that it is not clear how to measure variety, which
could be a reason why it is difficult to define requirements on data variety.

“What [is] include[d] in variety of data? Is there a good measure of variety?” -

Interview A

RE Implication 1: RE research should uncover new ways to specify vari-
ety and completeness criteria for data collection.

Unclear Design Domain. Three interviewees describe uncertainty in the
design domain as a reason for why it is difficult to specify training data. If the
design domain is unclear, it will be challenging to specify the necessary training
data.

“We need to understand for what context the training data can be used.” - Inter-

view J

“ODD [(Operational Design Domain)]? Yes, of course it translates into data require-

ments.” - Interview F

Challenges When Specifying Data and Runtime Monitors 213

RE Implication 2: RE research must provide better ways to specify the
context, since data selection and completeness criteria depend on it.

Unsuitable Safety Standards. Because we were specifically investigating ML
in safety critical applications, we asked the participants if they find guidance in
safety standards towards specifying training data. Five interviewees stated that
current safety standards used in their companies do not provide suitable guid-
ance for the development of ML models. While for example ISO 26262 provides
guidance on how to handle probabilistic effects in hardware, no such guidance is
provided for software related probabilistic faults.

“The ISO 26262 gives guidance on the hardware design; [...] how many faults per

hour [are acceptable] and how you achieve that. For the software side, it doesn’t

give any failure rates or anything like that. It takes a completely process oriented

approach [...].” - Interview C

One interviewee mentioned that safety standards should emphasise more the
data selection to prevent faults in the ML model due to insufficient training.

“To understand that you have the right data and that the data is representative,

ISO 26262 is not covering that right now which is a challenge.” - Interview H

RE Implication 3: RE methods and practices are needed to operation-
alise safety standards for the selection of training data.

3.2 Answer to RQ2: Challenges Practitioners Experience When
Specifying Runtime Monitors

We asked the interviewees on the role of runtime monitoring for the systems they
develop, their experience with specifying runtime monitoring, and the relation of
runtime monitoring to fulfilling safety requirements on the system. We identified
five challenge groups related to runtime monitoring: lack of explainability about
ML decisions, missing conditions for runtime checks, missing guidelines for data
selection, overhead for monitoring solution, and unsuitable safety standards.

Lack of Explainability About ML. A reason why it is difficult to specify
runtime monitors for ML models is the inability to produce failure models for
ML. In normal software development, causal cascades describe how a fault in a
software components propagates trough the systems and eventually leads to a
failure. This requires the ability to break down the ML model into smaller com-
ponents and analyse their potential failure behaviour. Four interviewees however
reported that they can only see the ML model as a “black-box” with no access
to the inner states of the ML model. As a consequence, there is no insight into
the failure behaviour of the ML model.

214 H.-M. Heyn et al.

“[Our insight is] limited because it’s a black box. We can only see what goes in

and then what comes out to the other side. And so if there is some error in the

behavior, then we don’t know if it’s because [of a] classification error, planning

error, execution error?” - Interview F

The reason for opacity of ML models is not necessarily due to technology limita-
tions, but also due to constraints from protection of intellectual property (IP).

“Why is it a black box? That’s not our choice. That’s because we have a supplier

and they don’t want to tell us [all details].” - Interview F

RE Implication 4: RE can play a crucial role in navigating the trade-off
between protecting IP of suppliers and sharing enough information to
allow for safety argumentation.

Missing Conditions for Runtime Checks. A problem of specifying runtime
monitors is the need for finding suitable monitoring conditions. This requires the
definition of metrics, goals and boundary conditions. Five interviewees report
that they face challenges when defining these metrics for ML models.

“What is like a confidence score, accuracy score, something like that? Which score

do you need to ensure [that you] classified [correctly]?” - Interview F

Especially the relation between correct behaviour of the ML model and measure
of confidence is unclear, and therefore impede runtime monitoring specification.

“We say confidence, that’s really important. But what can actually go wrong here?”

- Interview J

RE Implication 5: RE is called to provide methods for identifying con-
ditions for runtime checks.

Missing Guidelines for Data Selection. The inability to specify the meaning
of data variety also relates to missing conditions for runtime checks. For example,
runtime monitors can be used to collect additional training data, but without a
measure of data variety it is difficult to find the required data points.

Overhead for Monitoring Solution. An often overlooked problem seems to
be the induced (processing) overhead from a monitoring solution. Especially in
the automotive sector, many software components run on embedded computer
devices with limited resources.

Challenges When Specifying Data and Runtime Monitors 215

“You don’t have that much compute power in the car, so the monitoring needs to

be very light in its memory and compute footprint on the device, maybe even a

separate device that sits next to the device.” - Interview F

And due to the limited resources in embedded systems, monitoring solutions can
compromise timing requirements of the system. Additionally, one interviewee
reported concerns regarding the reduction of the ML model’s performance.

“[. . .] the true positive rate is actually decreasing when you have to pass it through

this second opinion goal. It’s good from a coverage and safety point of view, but it

reduces the overall system performance.” - Interview F

RE Implication 6: RE methods are needed to help finding suitable run-
time checks that do not negatively impact the performance of the
system.

Unsuitable Safety Standards. Safety standards are mostly not suitable for
being applied to ML model development. Therefore, safety is often ensured
through non-ML monitoring solutions. Interviewees reported that it is not a
good solution to rely only on the monitors for safety criticality:

“[. . .] so the safety is now moved from the model to the monitor instead, and it

shouldn’t be. It should be the combination of the two that makes up safety.” -

Interview B

One reason is that freedom of inference between a non-safety critical component
(the ML model), and a safety critical component (the monitor) must be ensured
which can complicate the system design.

“And then especially if you have mixed critical systems [it] means you have ASIL

[(Automotive Safety Integrity Level)] and QM [(Quality Management)] components

in your design [and] you want to achieve freedom from interference in your system.

You have to think about safe communication and memory protection.” - Interview J

RE Implication 7: RE is called to provide traceability and requirements
information models that allow a complete description of the system,
its monitors, and their relationship to high-level requirements (such
as safety).

4 Discussion and Conclusion

The results reveal connections between the challenges. Not all theme groups
relate exclusively to one of the two challenges. For example, themes in the groups

216 H.-M. Heyn et al.

unsuitable safety standards and missing guidelines for data selection relate to
both challenges of specifying training data and runtime monitoring. Further-
more, we identified cause-effect relations between different themes and across
different group of themes. For example IP protection is a cause for the inability
of accessing the inner states and for creating failure models for ML model. We
based this assessment on a semantic analyses of the words used in the statements
relating to these themes. For example, Interviewee F stated that:

“That neural network is something [of a] black box in itself. You don’t know why it

do[es] things. Well, you cannot say anything about its inner behavior” - Interview F

Later in the interview, the same participants states:

“Why is it a black box? That’s not our choice. That’s because we have a supplier

and they don’t want to tell us [all details].” - Interview F

Fig. 2 illustrates the identified cause-effect relations, relations between the
themes, and how the different themes relate to the challenges.

Recommendations to Practitioners and for Further Research. The iden-
tified root causes of the challenges described by the participants allowed us to
formulate recommendations listed in Table 4 and implications towards RE prac-
tises stated after each challenge theme in the previous section. Because these
recommendations try to solve root causes described by the participants of the
interview study, we think they are a useful first step towards solving the chal-
lenges related to specifying training data and runtime monitoring.

4.1 Related Literature

The problem of finding the “right” data: For acquiring data, data scientists have
to rely on data mining with little to no quality checking and potential biases
[4]. Biased datasets are a common cause for erroneous or unexpected behaviour
of ML models in critical environments, such as in medical diagnostic [8], in the
juridical system [19,38], or in safety-critical applications [15,47].

There are attempts to create “unbiased” datasets. One approach is to curate
manually the dataset, such as in the FairFace dataset [29], the CASIA-SURF
CeFaA dataset [33], or Fairbatch [41]. An alternative road is to use data aug-
mentation techniques to “rebalance” the dataset [27,46]. However, it was dis-
covered that it is not sufficient for avoiding bias to use an assumed balanced
datasets during training [20,51,52] because it is often unclear which features
in the data need to be balanced. Approaches for curating or manipulating the
dataset require information on the target domain, i.e., one needs to set require-
ments on the dataset depending on the desired operational context [6,16,22].
But deriving a data specification for ML is not common practise [25,34,43].

Challenges When Specifying Data and Runtime Monitors 217

Fig. 2. Connection between the identified challenge themes. Enclosed themes have been
identified as causes for the surrounding themes. Furthermore, dotted lines indicate
relations between different themes.

The Problem of Finding the “Right” Runtime Monitor: Through clever test
strategies, some uncertainty can be eliminated in regards to the behaviour of the
model [11]. However, ML components are often part of systems of systems and
their behaviour is hard to predict and analyse at design time [49]. DevOps prin-
ciples from software engineering give promising ideas on how to tackle remaining
uncertainty at runtime [35,48]. An overview of MLOps can be for example found
in [32]. As part of the operation of the model, runtime models that “augment
information available at design-time with information monitored at runtime”
help in detecting deviations from the expected behaviour [17]. These runtime
models for ML can take the form of model assertions, i.e., checking of explic-
itly defined attributes of the model at runtime [28]. However, the authors state
that “bias in training sets are out of scope for model assertion”. Another model
based approach can be the creation of neuron activation patterns for runtime
monitoring [12]. Other approaches treat the ML model as “black-box”, and only
check for anomalies and drifts in the input data [40] the output [44], or both

218 H.-M. Heyn et al.

Table 4. Recommendations for practitioners and suggestions for further research

ID Recommendation

I Avoid restrictive IP protection. IP protection is a cause for the inability of accessing the
inner states of the ML models (black-box model). This causes a nontransparent measure of
confidence, and an inability to formulate failure models. To our knowledge, no studies have yet
been performed on the consequences of IP protection of ML models on the ability to monitor
and reason (e.g., in a safety case) for the correctness of ML model decisions.

II Relate measures of confidence to actual performance metrics. For runtime monitoring,
the measure of confidence is often used to evaluate the reliability of the ML model’s results.
But without understanding and relating that measure to clearly defined performance metrics of
the ML model first, the measure of confidence provides little insight for runtime monitoring. In
general, defining suitable metrics and boundary conditions should become an integral part of
RE for machine learning as it affects both the ability to define data requirements and runtime
monitoring requirements.

III Overcome grown data selection habits. Grown data selection habits have been mentioned
as a reason for a lack of clear completeness criteria and a disconnection from requirements.
Based on our results, we argue that more systematic data selection processes need to be estab-
lished in companies. This would allow for a better connection of the data selection process
to requirement engineering and it creates a traceability between system requirements, com-
pleteness criteria and data requirements. Additionally, it might also reduce the amount of data
needed for training, and therefore cost of development.

IV Balance hardware limitation in embedded systems. Runtime monitoring causes a pro-
cessing and memory overhead that can compromise timing requirements and reduce the ML
model’s performance. Today, safety criticality of systems with ML is mostly ensured through
monitoring solutions. By decomposing the safety requirements instead onto both the monitor-
ing and the ML model, the monitors might become more resource efficient, faster, and less
constraining in regards to the decisions of the ML model. However, safety requirements on the
ML models might trigger requirements on the training data.

[18]. However, similar to the aforementioned challenges when specifying data
for ML, runtime monitoring needs an understanding on how to “define, refine,
and measure quality of ML solutions” [23], i.e., in relation to non-functional
requirements one needs to understand which quality aspects are relevant, and
how to measure them [21]. Most commonly applied safety standards emphasise
processes and traceability to mitigate systematic mistakes during the develop-
ment of critical systems. Therefore, if the training data and runtime monitoring
cannot be specified, a traceability between safety goals and the deployed system
cannot be established [10].

For many researchers and practitioners, runtime verification and monitoring
is a promising road to assuring safety and robustness for ML in critical soft-
ware [2,11]. However, runtime monitoring also creates a processing and memory
overhead that needs to be considered especially in resource-limited environments
such as embedded devices [39].

The related work has been mapped to the challenges identified in the inter-
view study in Table 3.

4.2 Threats to Validity

A lack of rigour (i.e., degree of control) in the study design can cause confound-
ing which can manifest bias in the results [45]. The following mechanisms in this
study tried to reduce confounding: The interview guide was peer-reviewed by an
independent researcher, and a test session of the interview was conducted. To
reduce personal bias, at least two authors were present during all interviews, and

Challenges When Specifying Data and Runtime Monitors 219

the authors took turn in leading the interviews. To confirm the initial findings
from the interview study and reduce the risk of researchers’ bias, a workshop was
organised which was also visited by participants who were not part of the inter-
view study. Another potential bias can arise from the sampling of participants.
Although we applied purposeful sampling, we still had to rely on the contact per-
sons of the companies to provide us with suitable interview candidates. We could
not directly see a list of employees and choose the candidates ourselves. Regard-
ing generalisability of the findings, the limited number of companies involved in
the study can pose a threat to external validity. However, two of the companies
are world-leading companies in their fields, which, in our opinion, gives them a
deep understanding and experience of the discussed problems. Furthermore, we
included companies from a variety of different fields to establish better general-
isability. Furthermore, our data includes only results valid for the development
of safety-critical ML models. We assume that the findings are applicable also
to other forms of criticality, such as privacy-critical, but we cannot conclude on
that generalisability based on the available data.

4.3 Conclusion

This paper reported on a interview-based study that identified challenges related
to specifying training data needs and runtime monitoring for safety critical ML
models. Through interviews conducted at five companies we identified 17 chal-
lenges in six groups. Furthermore, we performed a semantic analysis to identify
the underlying root-causes. We saw that several underlying challenges affect
both the ability to specify training data and runtime monitoring. For example,
we concluded that restrictive IP protection can cause an inability to access and
understand the inner states of a ML model. Without insight into the ML model’s
state, the measure of confidence cannot be related to actual performance metrics.
Without clear performance metrics, it is difficult to define the necessary degree of
variety in the training data. Furthermore, grown data selection impedes proper
requirement engineering for training data. Finally, safety requirements should be
distributed on both the ML model which can cause requirements on the training
data, and on runtime monitors which can reduce the overhead by the moni-
toring solution. These recommendations will serve as starting point for further
engineering research.

References

1. Abid, A., Farooqi, M., Zou, J.: Persistent anti-muslim bias in large language mod-
els. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society,
pp. 298–306 (2021)

2. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecycle:
Desiderata, methods, and challenges. ACM Comput. Surv. 54(5), 1–39 (2021)

3. Banko, M., Brill, E.: Scaling to very very large corpora for natural language dis-
ambiguation. In: Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics, pp. 26–33 (2001)

220 H.-M. Heyn et al.

4. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. L. Rev. 104, 671
(2016)

5. Bayram, F., Ahmed, B.S., Kassler, A.: From concept drift to model degradation:
An overview on performance-aware drift detectors. Knowl. Based Syst. 108632
(2022)

6. Bencomo, N., Guo, J.L., Harrison, R., Heyn, H.M., Menzies, T.: The secret to
better ai and better software (is requirements engineering). IEEE Softw. 39(1),
105–110 (2021)

7. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Require-
ments reflection: requirements as runtime entities. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, vol. 2, pp. 199–
202 (2010)

8. Bernhardt, M., Jones, C., Glocker, B.: Potential sources of dataset bias complicate
investigation of underdiagnosis by machine learning algorithms. Nat. Med. 1–2
(2022)

9. Blodgett, S.L., Barocas, S., Daum’e, H., Wallach, H.M.: Language (technology) is
power: A critical survey of ”bias” in nlp. In: ACL (2020)

10. Borg, M., et al.: Safely entering the deep: A review of verification and validation
for machine learning and a challenge elicitation in the automotive industry. J.
Automotive Softw. Eng. 1(1), 1–19 (2018)

11. Breck, E., Cai, S., Nielsen, E., Salib, M., Sculley, D.: The ml test score: A rubric for
ml production readiness and technical debt reduction. In: 2017 IEEE International
Conference on Big Data, pp. 1123–1132. IEEE (2017)

12. Cheng, C.H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. In: 2019 Design, Automation & Test in Europe Conference & Exhibition,
pp. 300–303. IEEE (2019)

13. Creswell, J.W., Creswell, J.D.: Research design: Qualitative, quantitative, and
mixed methods approaches. Sage publications (2017)

14. Creswell, John W.; Poth, C.N.: Qualitative Inquiry and Research Design: Choosing
Among Five Approaches, 4th edn. Sage Publishing (2017)

15. Fabbrizzi, S., Papadopoulos, S., Ntoutsi, E., Kompatsiaris, I.: A survey on bias in
visual datasets. arXiv preprint arXiv:2107.07919 (2021)

16. Fauri, D., Dos Santos, D.R., Costante, E., den Hartog, J., Etalle, S., Tonetta, S.:
From system specification to anomaly detection (and back). In: Proceedings of the
2017 Workshop on Cyber-Physical Systems Security and PrivaCy, pp. 13–24 (2017)

17. Giese, H., et al.: Living with uncertainty in the age of runtime models. In: Ben-
como, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS,
vol. 8378, pp. 47–100. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08915-7 3

18. Ginart, T., Zhang, M.J., Zou, J.: Mldemon: Deployment monitoring for machine
learning systems. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 3962–3997. PMLR (2022)

19. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)

20. Gwilliam, M., Hegde, S., Tinubu, L., Hanson, A.: Rethinking common assumptions
to mitigate racial bias in face recognition datasets. In: Proceedings of the IEEE
CVF, pp. 4123–4132 (2021)

21. Habibullah, K.M., Horkoff, J.: Non-functional requirements for machine learning:
understanding current use and challenges in industry. In: 2021 IEEE 29th RE
Conference, pp. 13–23. IEEE (2021)

http://arxiv.org/abs/2107.07919
https://doi.org/10.1007/978-3-319-08915-7_3
https://doi.org/10.1007/978-3-319-08915-7_3

Challenges When Specifying Data and Runtime Monitors 221

22. Heyn, H.-M., Subbiah, P., Linder, J., Knauss, E., Eriksson, O.: Setting AI in con-
text: a case study on defining the context and operational design domain for auto-
mated driving. In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol.
13216, pp. 199–215. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
98464-9 16

23. Horkoff, J.: Non-functional requirements for machine learning: Challenges and new
directions. In: 2019 IEEE 27th RE Conference, pp. 386–391. IEEE (2019)

24. Humbatova, N., Jahangirova, G., Bavota, G., Riccio, V., Stocco, A., Tonella, P.:
Taxonomy of real faults in deep learning systems. In: 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering, pp. 1110–1121 (2020)

25. Ishikawa, F., Yoshioka, N.: How do engineers perceive difficulties in engineering
of machine-learning systems?-questionnaire survey. In: 2019 IEEE/ACM Joint 7th
International Workshop on Conducting Empirical Studies in Industry, pp. 2–9.
IEEE (2019)

26. Islam, M.J., Nguyen, G., Pan, R., Rajan, H.: A comprehensive study on deep
learning bug characteristics. In: 2019 ACM 27th European Software Engineering
Conference, pp. 510–520 (2019)

27. Jaipuria, N., et al.: Deflating dataset bias using synthetic data augmentation. In:
Proceedings of the IEEE CVF, pp. 772–773 (2020)

28. Kang, D., Raghavan, D., Bailis, P., Zaharia, M.: Model assertions for monitoring
and improving ml models. Proc. Mach. Learn. Syst. 2, 481–496 (2020)

29. Karkkainen, K., Joo, J.: Fairface: Face attribute dataset for balanced race, gender,
and age for bias measurement and mitigation. In: Proceedings of the IEEE CVF,
pp. 1548–1558 (2021)

30. King, N., Horrocks, C., Brooks, J.: Interviews in qualitative research. Sage (2018)
31. Knight, J.C.: Safety critical systems: challenges and directions. In: 24th Interna-

tional Conference on Software Engineering, pp. 547–550 (2002)
32. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine learning operations (mlops):

Overview, definition, and architecture. arXiv preprint arXiv:2205.02302 (2022)
33. Liu, A., Tan, Z., Wan, J., Escalera, S., Guo, G., Li, S.Z.: Casia-surf cefa: A bench-

mark for multi-modal cross-ethnicity face anti-spoofing. In: Proceedings of the
IEEE CVF, pp. 1179–1187 (2021)

34. Liu, H., Eksmo, S., Risberg, J., Hebig, R.: Emerging and changing tasks in the
development process for machine learning systems. In: Proceedings of the Interna-
tional Conference on Software and System Processes, pp. 125–134 (2020)

35. Lwakatare, L.E., Crnkovic, I., Bosch, J.: Devops for ai-challenges in development of
ai-enabled applications. In: 2020 International Conference on Software, Telecom-
munications and Computer Networks, pp. 1–6. IEEE (2020)

36. Marques, J., Yelisetty, S.: An analysis of software requirements specification char-
acteristics in regulated environments. J. Softw. Eng. Appli. (IJSEA) 10(6), 1–15
(2019)

37. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021)

38. Miron, M., Tolan, S., Gómez, E., Castillo, C.: Evaluating causes of algorithmic
bias in juvenile criminal recidivism. Artifi. Intell. Law 29(2), 111–147 (2021)

39. Rabiser, R., Schmid, K., Eichelberger, H., Vierhauser, M., Guinea, S., Grünbacher,
P.: A domain analysis of resource and requirements monitoring: Towards a com-
prehensive model of the software monitoring domain. Inf. Softw. Technol. 111,
86–109 (2019)

https://doi.org/10.1007/978-3-030-98464-9_16
https://doi.org/10.1007/978-3-030-98464-9_16
http://arxiv.org/abs/2205.02302

222 H.-M. Heyn et al.

40. Rahman, Q.M., Sunderhauf, N., Dayoub, F.: Per-frame map prediction for continu-
ous performance monitoring of object detection during deployment. In: Proceedings
of the IEEE CVF, pp. 152–160 (2021)

41. Roh, Y., Lee, K., Whang, S., Suh, C.: Sample selection for fair and robust training.
Adv. Neural. Inf. Process. Syst. 34, 815–827 (2021)

42. Saldaña, J.: The coding manual for qualitative researchers. Sage Publishing, 2nd
edn. (2013)

43. Sambasivan, N., Kapania, S., Highfill, H., Akrong, D., Paritosh, P., Aroyo, L.M.:
“Everyone wants to do the model work, not the data work”: Data cascades in
high-stakes ai. In: 2021 Conference on Human Factors in Computing Systems, pp.
1–15 (2021)

44. Shao, Z., Yang, J., Ren, S.: Increasing trustworthiness of deep neural networks via
accuracy monitoring. arXiv preprint arXiv:2007.01472 (2020)

45. Slack, M.K., Draugalis, J.R., Jr.: Establishing the internal and external validity of
experimental studies. Am. J. Health Syst. Pharm. 58(22), 2173–2181 (2001)

46. Uchôa, V., Aires, K., Veras, R., Paiva, A., Britto, L.: Data augmentation for face
recognition with cnn transfer learning. In: 2020 International Conference on Sys-
tems, Signals and Image Processing, pp. 143–148. IEEE (2020)

47. Uricár, M., Hurych, D., Krizek, P., Yogamani, S.: Challenges in designing datasets
and validation for autonomous driving. arXiv preprint arXiv:1901.09270 (2019)

48. Vierhauser, M., Rabiser, R., Grünbacher, P.: Requirements monitoring frameworks:
A systematic review. Inf. Softw. Technol. 80, 89–109 (2016)

49. Vierhauser, M., Rabiser, R., Grünbacher, P., Danner, C., Wallner, S., Zeisel, H.: A
flexible framework for runtime monitoring of system-of-systems architectures. In:
2014 IEEE Conference on Software Architecture, pp. 57–66. IEEE (2014)

50. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: Perspec-
tives from data scientists. In: 2019 IEEE 27th International Requirements Engi-
neering Conference Workshops, pp. 245–251. IEEE (2019)

51. Wang, A., et al.: Revise: A tool for measuring and mitigating bias in visual datasets.
Int. J. Comput. Vis. 1–21 (2022)

52. Wang, T., Zhao, J., Yatskar, M., Chang, K.W., Ordonez, V.: Balanced datasets are
not enough: Estimating and mitigating gender bias in deep image representations.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(October 2019)

53. Wardat, M., Le, W., Rajan, H.: Deeplocalize: Fault localization for deep neural
networks. In: 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering, pp. 251–262. IEEE (2021)

54. Zhang, X., et al.: Towards characterizing adversarial defects of deep learning soft-
ware from the lens of uncertainty. 2020 IEEE/ACM 42nd International Conference
on Software Engineering, pp. 739–751 (2020)

http://arxiv.org/abs/2007.01472
http://arxiv.org/abs/1901.09270

A Requirements Engineering Perspective
to AI-Based Systems Development: A Vision

Paper

Xavier Franch1,2(B) , Andreas Jedlitschka2 , and Silverio Martínez-Fernández1

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{xavier.franch,silverio.martinez}@upc.edu

2 Fraunhofer IESE, Kaiserslautern, Germany
andreas.jedlitschka@iese.fraunhofer.de

Abstract. Context and motivation: AI-based systems (i.e., systems integrating
some AI model or component) are becoming pervasive in society. A number of
characteristics of AI-based systems challenge classical requirements engineering
(RE) and raise questions yet to be answered. Question: This vision paper inquires
the role that RE should play in the development of AI-based systems with a focus
on three areas: roles involved, requirements’ scope and non-functional require-
ments. Principal Ideas: The paper builds upon the vision that RE shall become the
cornerstone in AI-based system development and proposes some initial ideas and
roadmap for these three areas. Contribution: Our vision is a step towards clarify-
ing the role of RE in the context of AI-based systems development. The different
research lines outlined in the paper call for further research in this area.

Keywords: Requirements Engineering · Artificial Intelligence ·Machine
Learning · AI-based System · Vision Paper · RE · AI ·ML

1 Introduction

AI-based systems, defined as software systems that integrate artificial intelligence (AI)
models and components [22], are becoming increasingly pervasive in society. Being
yet-another-type of software system, the development of AI-based systems requires
following usual software engineering practices [20] and, in particular, requirements
engineering (RE) is expected to be applicable in this context.

Still, RE in the context of AI-based systems (which is sometimes referred to as
RE4AI1) has been reported as challenging by several authors. Some authors have focused
on particular RE issues (e.g., a precise definition of satisfaction of a specification in the
presence of AI [3]). Others analyse RE4AI from a wider perspective. For instance,
Ishikawa and Yoshioka conducted a questionnaire-based survey with 278 responses and
report that “decision making with the customers” is the dominant concern when building

1 Other authors are more specific and talk about RE for machine learning (ML) systems. In this
paper, we have adopted the widest AI perspective, which includes ML.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 223–232, 2023.
https://doi.org/10.1007/978-3-031-29786-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_15&domain=pdf
http://orcid.org/0000-0001-9733-8830
http://orcid.org/0000-0003-3590-6331
http://orcid.org/0000-0001-9928-133X
https://doi.org/10.1007/978-3-031-29786-1_15

224 X. Franch et al.

ML-based systems [16]. Several works [1, 12, 22] enumerate a number of challenges
related to RE, e.g., importance of context, consideration of data-related requirements
and need to define new types of non-functional requirements, this latter aspect also
mentioned by Horkoff’s seminal paper on the topic [13].

These works, cited as examples, uncover a tension between the current practices of
AI-based development and RE. This is partly motivated by the novel and fast emergence
of AI in the software arena. The unprecedented evolving pace of new AI solutions and
technologies puts the emphasis on creating newmodels and algorithms to solve all kinds
of complex problems, disregardingmethodological aspects required by the complexity to
integrate these models and algorithms into a large software system [18]. This complexity
calls for adopting well-established software engineering practices that have been largely
ignored [20], RE being one of them. What are the requirements that apply to these
models, to the data needed to build them, and to the algorithms to process them?Who is
in charge of formulating these requirements? The answer to this type of questions will
shape the form RE4AI will take in the future.

2 Background

From a technological stance, a cause of this tension is the data-oriented nature of AI-
based systems. Data management has resulted in new roles involved in the development
of AI-based systems. Besides, data lies at the heart of a major activity in AI-based
system development, namely training, which may have its own requirements, different
from those for the system-to-be, therefore yielding diverse requirement scopes. These
new scopes may bring their particular perspectives on requirements, represented by new
types of non-functional requirements, or redefinition of existing ones. In this paper,
to make our vision concrete, we are going to focus on the three aforementioned aspects.

Roles.Based on a literature review, Pei et al. present an overviewof the different roles
involved in RE for ML systems, their RE-related concerns and challenges, and colla-
boration patterns among them [26]. Starting from the classical RE roles of Business
Expert, Requirements Engineer and Software Engineer, they propose adding Domain
Expert and Data Scientist. They model the collaboration among these actors using i*,
although the proposed model does not include the requirements engineer, which makes
the responsibilities and dependencies of this role implicit or even hidden. Collaboration
among Requirements Engineer and Data Scientist is also stressed as a key factor by
Ahmad et al. [1].

Adopting a more specific stance and through an interview-based survey, Vogelsang
and Borg take the data scientist perspective, given the importance of this role in ML
system development [32]. The paper focuses on the activities done, processes followed
and challenges found by data analysts in the context of RE4AI and does not explore
connections with other roles. Still, the authors make a clear point that data scientist
decisions should be subordinated to the classical job of the requirements engineer.

Non-Functional Requirements (NFRs). Several authors have explored which NFRs
apply to AI-based systems; in fact, according to amapping study byMartínez-Fernández
et al., this is the hottest topic in the RE4AI-related literature [22].

A Requirements Engineering Perspective to AI-Based Systems Development 225

A good number of papers explore a designated type of NFR in detail, e.g., safety,
performance [4][29]. Other authors adopt a holistic perspective and investigate which
NFRs apply to AI-based systems. For instance, Habibullah and Horkoff conducted an
interview-based survey with ten practitioners [11] to elicit NFR types, their priorities,
and most relevant NFR-related challenges. In summary, they state: (1) NFR types can
be grouped into thematically-relevant clusters; (2) there are a number of new NFR types
specifically related to AI-based systems, or whose relevance excels in this context, such
as trust, ethics and explainability [2]; (3) other traditional NFR types, such as usability,
are not considered so prioritary (although as usual, there are conflicting views on the
importance of this and other NFR types in AI-based systems [11]).

Requirements Scope. Some authors have already considered the need to identify the
concrete system part, which is the target of a particular NFR. For instance, performance,
as discussed in [29], refers tomodel performance.More generally, Siebert et al. propose a
layered view approach toML systemquality, fromEnvironment to System/Infrastructure
and then to ML Components, embracing model and data [28]. This approach is also
adopted by Habibullah et al., who argue that requirements (concretely, NFRs) over ML
systems may apply to different scopes [10]. They propose as scopes: Training Data, ML
Algorithm, ML Model, Results and the whole ML System. Then, they explore which
NFRs apply to each scope. In some cases, application requires an adaptation of the
standard definition (e.g., from a software system perspective to a data perspective).

At their turn, adopting an intentional viewpoint, Nalchigar et al. identify three per-
spectives in modellingML requirements [24]: (1) Business view, expressing stakeholder
requirements; (2) Analytics Design view, representing the design of ML solutions for
addressing the former requirements; (3) Data Preparation view, conceptualising the
design of data preparation tasks. The latter two views are related to some of the scopes
identified in [10], although with emphasis on design consequences.

3 RE4AI: Vision and Roadmap

In this paper, we envision that RE shall become the cornerstone that coordinates
all roles, activities and artefacts that are involved in the development of AI-based
systems. We support this vision upon the following arguments:

• Requirements engineers possess a number of skills that make themwell-suited for this
new challenge, especially communication skills [25]. For instance, they know how to
talk to people of different profiles and how to bring them together. Therefore, they are
in a good position to mediate the communication gap amongst roles.

• “Classical” RE distinguishes different scopes for requirements, e.g. stakeholder
requirements, system requirements, etc. [14]. Therefore, considering additional scopes
as those mentioned in the Sect. 2, seems to fit naturally in the discipline.

• Lately, new NFRs have been incorporated in the RE body of knowledge, in different
types of systems (e.g., mobile games [30]), or due to societal needs (e.g., sustainability
[5]). Thus, RE is well-prepared to replicate the process for AI-significant qualities,
and help in the processes of which and where apply to every context.

226 X. Franch et al.

Building upon this vision and the background outlined in Sect. 2, we elaborate a
roadmap for each of the three areas, which we are focusing on. The roadmap consists of
a baseline research position followed by an enumeration of some research lines.

Roles. Our baseline research position aligns with Vogelsang and Borg’ statement on the
need of the requirements engineer to act as a bridge among the customer and technical
roles as data scientist [32]. For this reason, we place the requirements engineer role in
the centre of the scene (see Fig. 1). Surrounding it, we identify several other roles (see
definitions in Table 1 and most relevant relationships in Fig. 1):

• We split the concept of Business Expert from [26] into Customer, Domain Expert,
Ethics Manager, and Regulation Expert, recognizing the importance of adhering to
all kinds of regulations and social demands when developing AI-based systems.

• We introduce the Software Engineer as a multi-facet role embracing all software
engineering roles different from RE: software architect, developer, etc.

• We have decided to split the role of data scientist into two: (i) the Data Engineer, who
takes care of all data-related aspects in the typical AI/MLpipeline (mining, harvesting,
selecting, cleaning, annotating, enriching, augmenting, …); (ii) the AI Expert, who
knows the algorithms and models existing in the AI discipline, when they can be
applied and what results do they bring. It is worth remarking that, as usual, a person
may play more than one role, therefore our identification of two different roles does
not preclude that a single person, who could be labelled as a Data Scientist, ultimately
plays both of them together.

Table 1. Roles involved in RE4AI.

Stakeholder Main responsibility

Customer Has the vision of the AI-based system and provides feedback when
requested

Domain Expert Has knowledge on the domain (including the data in that domain) in
which the AI-based system will operate

Ethics Manager Ensures that the AI-based systems work according to ethical
principles

Regulations Expert Ensures that regulations on trustworthiness, inclusiveness, etc., are
fulfilled

Requirements Engineer Formulates the needs of the customer, collaborating with all other
roles

Data Engineer Gathers, manipulates, and tests data to make it usable by other roles

AI Engineer Knows the best algorithm to be applied in every situation

Software Engineer Designs, develops, tests, and deploys software as required

A Requirements Engineering Perspective to AI-Based Systems Development 227

Fig. 1. RE4AI: roles and a representative sample of their relationships.

This baseline position opens a research roadmap along the following lines:

• Tocomplete a catalogueof roles and their responsibilities.Concerning responsibilities,
goal-oriented (intentional)models as proposed in [26] look as an appropriate approach,
also because this type of models is well-suited to include NFRs as discussed below.

• Related to the previous item, it can be argued that the presented figure has a classical
flavour, not completely agile. On the one hand, we are not including a role such as
Product Owner. On the other hand, all interactions are proposed to go through the
Requirements Engineer, who could eventually become a bottleneck. We can envisage
more agile micro-interactions, where, e.g., the Data Engineer and the AI Engineer
may directly collaborate during the training process to curate the data set to achieve
the required values for accuracy (represented with dotted lines in Fig. 1).

• The central position of the Requirements Engineer requires additional knowledge
compared to amore traditional setting. For instance, the Requirements Engineer needs
to understandwhat are the data characteristics that matter to Data Engineers (e.g., size,
balance, …) and how requirements relate to them.

Requirements Scope. We concur with Habibullah et al.’s vision on the existence of
requirements scopes that distinguish software, data and AI algorithms. This baseline
position opens a research roadmap along the following lines:

• Determine the full set of relevant scopes. For instance, some scope may be worth
adding. Remarkably, we can think of adding a Data Engineering scope from the
software perspective. For instance, when new data is needed, it may be necessary to
develop some software component to gather this data from the source in appropriate
quality, and this component should be developed according to its own requirements.
Remarkably, such a Data Engineering scope could be useful in other contexts not

228 X. Franch et al.

strictly related to AI-based systems where it is still necessary to acquire data from
different sources (e.g., from IoT devices).

Another possible scope emerges if we consider not just software requirements but
system requirements. In this case, we can think of a Hardware scope for which require-
ments on e.g. the type of processor (for instance, requiring the use of aGPU for efficiency
reasons) or additional components (for instance, requiring a wattmeter in order to make
energy efficiency measurable) become relevant, given the impact on runtime efficiency
and even in accuracy.

• Clarify the workflow among different types of requirements and constraints. While
the definition of scopes provides a static view of the types of requirements that apply
in AI-based systems, there is a need to put all of them together into a holistic view,
clarifying their relationships. See Fig. 2 for an example scenario showing how the
Requirements Engineer elicits and documents requirements (R) and constraints (C)
from a Customer deploying an app for plant recognition.

Fig. 2. RE4AI: example scenario showing the flow of requirements (roles identified by initials).

Non-Functional Requirements. Current approaches (cf. Background) consider all
types of NFRs at the same level of abstraction, e.g., Habibullah and Horkoff’s clus-
ters [11]. We envision the convenience of hierarchizing NFR types. In particular, we
propose as a baseline position to use the structure proposed in the ISO/IEC 25010 stan-
dard [15], which distinguishes quality in use and product quality models, with the former
defined in terms of the latter. In addition, because a number of NFR types may not apply
to all the requirement scopes, or their definition may vary from scope to scope [11], we
propose to replicate this structure for every scope (see Fig. 3).

From this baseline position, we foresee the following research lines:

• The composition and relationships of the different quality models is a significant
long-term milestone to achieve by the community. Of course, it may be argued that,

A Requirements Engineering Perspective to AI-Based Systems Development 229

because the use of standards is not widespread in the traditional RE context [7], it
can be even harder to push for standards in this lively AI context, but still we believe
that the structure that standards provide, entails a benefit per se to consolidate what
is meant by RE4AI.

• In another vein, as hinted above in Fig. 3 and aligned with the terminology proposed,
e.g., by the IREB association [14], we prefer to move from NFRs to quality require-
ments and constraints. The reason is, on the one hand, to adhere to current terminology
promoted by certification bodies and other authors [27], and on the other hand the fact
that constraints may play an important role when it comes to understand the limits of
data in a particular context: a constraint may well limit the size of data, the period
of availability, and other information that can be relevant to Data Engineers and AI
Engineers to do their job.

• There are a number of concepts that have arisen in the AI community that relate to
NFRs and quality, whose fit to this vision needs to be explored. Examples are: data
smells [6], highly related to data requirements; Great Expectations (https://greatexpe
ctations.io/), as an open standard for data quality; model cards [23], as an example of
description of models which can serve to check whether requirements at the scope of
ML Model are satisfied or not.

Fig. 3. RE4AI: different quality models.

4 Discussion

In this vision paper, we have reflected on the role of RE in the development of AI-based
systems (RE4AI) and advocated that RE should articulate all activities and roles around.
For space issues, we have focused the vision on three concrete major areas that directly
relate to the data-oriented nature of AI-based systems, not considering other that can be
equally important [3, 22]. For each area, we have envisaged a roadmap in the form of
baseline position and research lines departing from this position.

These three areas have been presented as independent, but they are clearly interre-
lated. For instance, some NFR types will not apply to all scopes, or some scopes will
not be of interest for all roles. In order to integrate these areas (and others that we are
not addressing, e.g. verification and validation), we think of constructing conceptual
models such as ontologies for knowledge representation [17] which can integrate all
these concepts into a holistic model, as we have done in the field or architectures for
AI-based systems [9]. Going further, we can think of linking requirements with design

https://greatexpectations.io/

230 X. Franch et al.

decisions (e.g., which algorithms work better for the elicited requirements) and apply
situational method engineering with this purpose, as we have done in previous works
related to data-driven methods for RE [8].

We think that the vision presented in this paper may impact future research and
practice in RE4AI: concerning research, we have delineated a number of research lines,
which may trigger investigation in the community; concerning practice, this vision may
contribute to clarify practical aspects that arise in everyAI project, by identifying respon-
sibilities of different roles, defining scopes that are different than in traditional systems,
and helping to understand quality requirements and constraints in the context ofAI-based
systems. We acknowledge that practical impact needs to be considered in the long-term,
once research progresses more in the short- and mid-term through new results in the
suggested research lines. To make this impact possible, we foresee different actions that
the community can take. Some are low-hanging fruits, such as continuing the series of
workshops related to the topic, notablyAIRE andRE4AI, associatedwith conferences as
REFSQ and IEEE RE, and to educational programs in software and systems engineering
curricula. Others can be more ambitious, e.g. promoting a new RE certification program
in the IREB association, which could have a high practical impact.

Acknowledgments. This paper is part of the project TED2021-130923B-I00, funded by
MCIN/AEI/https://doi.org/10.13039/501100011033 and the European Union “NextGenera-
tionEU”/PRTR.

References

1. Ahmad, K., Bano, M., Abdelrazek, M., Arora, C., Grundy, J.: What’s up with requirements
engineering for artificial intelligence systems? RE 1–12 (2021)

2. Balasubramaniam, N., Kauppinen, M., Hiekkanen, K., Kujala, S.: Transparency and explain-
ability of AI systems: ethical guidelines in practice. In: Gervasi, V., Vogelsang, A. (eds.)
REFSQ 2022. LNCS, vol. 13216, pp. 3–18. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-98464-9_1

3. Berry, D.M.: Requirements engineering for artificial intelligence: what is a requirements
specification for an artificial intelligence? In: Gervasi, V., Vogelsang, A. (eds.) REFSQ 2022.
LNCS, vol. 13216, pp. 19–25. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
98464-9_2

4. Burton, S., Gauerhof, L., Heinzemann, C.: Making making the case for safety of machine
learning in highly automated driving. In: SAFECOMP, pp. 5–16 (2017)

5. Duboc, L., Penzenstadler, B., Porras, J., et al.: Requirements engineering for sustainability:
an awareness framework for designing software systems for a better tomorrow. Requirements
Eng. 25, 469–492 (2020)

6. Foidl, H., Felderer, M., Ramler, R.: Data smells: categories, causes and consequences, and
detection of suspicious data in AI-based systems. In: CAIN, pp. 229–239 (2022)

7. Franch, X., Glinz, M., Méndez, D., Seyff, N.: A Study about the knowledge and use of
requirements engineering standards in industry. IEEETrans. Software Eng. 48(9), 3310–3325
(2022)

8. Franch, X., Henriksson, A., Ralyté, J., Zdravkovic, J.: Data-driven agile requirements elic-
itation through the lenses of situational method engineering. In: RE@Next, pp. 402–407
(2020)

https://doi.org/10.13039/501100011033
https://doi.org/10.1007/978-3-030-98464-9_1
https://doi.org/10.1007/978-3-030-98464-9_2

A Requirements Engineering Perspective to AI-Based Systems Development 231

9. Franch, X.,Martínez-Fernández, S., Ayala, C., Gómez, C.: Architectural decisions in ai-based
systems: an ontological view. In: QUATIC, pp. 18–27 (2022)

10. MohammadHabibullah, K., Gay, G., Horkoff, J.: Non-Functional Requirements forMachine
Learning: An Exploration of System Scope and Interest. CoRR abs/2203.11063 (2022)

11. Mohammad Habibullah, K., Horkoff, J.: Non-functional requirements for machine learning:
understanding current use and challenges in industry. In: RE:, pp. 13–23 (2021)

12. Heyn, H.-M., Knauss, E., Pir Muhammad, A., et al.: Requirement engineering challenges for
AI-intense systems development. In: WAIN, pp. 89–96 (2021)

13. Horkoff, J.:Non-functional requirements formachine learning: challenges andnewdirections.
In: RE, pp. 386–391 (2019)

14. The International Requirements Engineering Board: IREBCertified Professional for Require-
ments Engineering – Foundation Level – Syllabus, v. 3.1.0 (2022)

15. ISO/IEC 25010:2011. Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models

16. Ishikawa, F., Yoshioka, N.: How do Engineers perceive difficulties in engineering of machine-
learning systems’ questionnaire survey. In: CESSER-IP, pp. 2–9 (2019)

17. Jurisica, I., Mylopoulos, J., Yu, E.: Ontologies for knowledge management: an information
systems perspective. Knowl. Inf. Syst. 6(4), 380–401 (2004). https://doi.org/10.1007/s10115-
003-0135-4

18. Khomh, F., Adams, B., Cheng, J., Fokaefs, M., Antoniol, G.: Software engineering for
machine-learning applications: the road ahead. IEEE Softw. 35(5), 81–84 (2018)

19. Kuwajima, H., Yasuoka, H., Nakae, T.: Engineering problems in machine learning systems.
Mach. Learn. 109(5), 1103–1126 (2020)

20. Lwakatare. L.E., Raj, A., Crnkovic, I., Bosch, J., Holmström Olsson, H.: Large-large-scale
machine learning systems in real-world industrial settings: a review of challenges and solu-
tions. Inf. Software Technol. 127, 106368 (2020)

21. Martínez-Fernández, S., Franch, X., Jedlitschka, A., Oriol, M., Trendowicz, A.: Developing
and operating artificial intelligence models in trustworthy autonomous systems. In: Cherfi,
S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 221–229. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75018-3_14

22. Martínez-Fernández, S., Bogner, J., Franch, X., et al.: Software engineering for AI-based
systems: a survey. ACM Trans. Software Eng. Methodol. 31(2), 37e:1–37e:59 (2022)

23. Mitchell, M., Wu, S., et al.: Model cards for model reporting. In: FAT*, pp. 220–229 (2019)
24. Nalchigar, S., Yu, E., Keshavjee, K.: Modeling machine learning requirements from three

perspectives: a case report from the healthcare domain. Requirements Eng. 26(2), 237–254
(2021)

25. Paech, B.: What is a requirements engineer? IEEE Softw. 25(4), 16–17 (2008)
26. Pei, Z., Liu, L., Wang, C., Wang, J.: Requirements engineering for machine learning: a review

and reflection. In: REW, pp. 166–175 (2022)
27. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer

(2010). https://doi.org/10.1007/978-3-642-12578-2
28. Siebert, J., et al.: Towards towards guidelines for assessing qualities of machine learning

systems. In: Shepperd, M., Brito e Abreu, F., Rodrigues da Silva, A., Pérez-Castillo, R. (eds.)
QUATIC 2020. CCIS, vol. 1266, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58793-2_2

29. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-driven test
generation for autonomous vehicles with machine learning components. IEEE Transactions
on Intelligent Vehicles 5(2), 265–280 (2020)

30. Valente, L., Feijó, B., Leite, J.C.S.P.: Mapping quality requirements for pervasive mobile
games. Requirements Eng. 22(1), 137–165 (2017)

https://doi.org/10.1007/s10115-003-0135-4
https://doi.org/10.1007/978-3-030-75018-3_14
https://doi.org/10.1007/978-3-642-12578-2
https://doi.org/10.1007/978-3-030-58793-2_2

232 X. Franch et al.

31. Villamizar, H., Escovedo, T., Kalinowski, M.: Requirements engineering for machine
learning: a systematic mapping study. In: SEAA, pp. 29–36 (2021)

32. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspectives from
data scientists. In: REW, pp. 245–251 (2019)

Out-of-Distribution Detection as Support
for Autonomous Driving Safety Lifecycle

Jens Henriksson1, Stig Ursing1, Murat Erdogan2, Fredrik Warg3 ,
Anders Thorsén3(B) , Johan Jaxing4, Ola Örsmark5,

and Mathias Örtenberg Toft̊as1

1 Semcon, Department Software and Emerging Tech, Gothenburg, Sweden
{jens.henriksson,stig.ursing,mathias.ortenberg-toftas}@semcon.com

2 Veoneer, Linköping, Sweden
murat.erdogan@veoneer.com

3 RISE Research Institutes of Sweden, Bor̊as, Sweden
{fredrik.warg,anders.thorsen}@ri.se

4 Agreat, Gothenburg, Sweden
johan.jaxing@agreat.com

5 Comentor, Gothenburg, Sweden
ola.orsmark@comentor.se

Abstract. [Context and Motivation] The automotive industry is
moving towards increased automation, where features such as automated
driving systems typically include machine learning (ML), e.g. in the
perception system. [Question/Problem] Ensuring safety for systems
partly relying on ML is challenging. Different approaches and frameworks
have been proposed, typically where the developer must define quanti-
tative and/or qualitative acceptance criteria, and ensure the criteria are
fulfilled using different methods to improve e.g., design, robustness and
error detection. However, there is still a knowledge gap between quality
methods and metrics employed in the ML domain and how such meth-
ods can contribute to satisfying the vehicle level safety requirements.
[Principal Ideas/Results] In this paper, we argue the need for con-
necting available ML quality methods and metrics to the safety lifecycle
and explicitly show their contribution to safety. In particular, we anal-
yse Out-of-Distribution (OoD) detection, e.g., the frequency of novelty
detection, and show its potential for multiple safety-related purposes.
I.e., as (a) an acceptance criterion contributing to the decision if the
software fulfills the safety requirements and hence is ready-for-release,
(b) in operational design domain selection and expansion by including
novelty samples into the training/development loop, and (c) as a run-
time measure, e.g., if there is a sequence of novel samples, the vehicle
should consider reaching a minimal risk condition. [Contribution] This
paper describes the possibility to use OoD detection as a safety measure,
and the potential contributions in different stages of the safety lifecycle.

This research has been supported by the Strategic vehicle research and innovation
(FFI) programme in Sweden, via the project SALIENCE4CAV (ref. 2020-02946) and
by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded
by Knut and Alice Wallenberg Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 233–242, 2023.
https://doi.org/10.1007/978-3-031-29786-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_16&domain=pdf
http://orcid.org/0000-0003-4069-6252
http://orcid.org/0000-0001-7933-3729
https://doi.org/10.1007/978-3-031-29786-1_16

234 J. Henriksson et al.

Keywords: Automotive safety · Out-of-Distribution detection ·
Machine learning · Automated driving systems · Safety requirements

1 Introduction

Machine learning (ML) techniques are increasingly used in many domains to
solve problems where rule-based algorithms are difficult or impractical to con-
struct or do not scale. One common use is for object detection and classification
in images/video, an area where large advances have been made in the last decade.
This is often used for perception systems in robotics as a way to create a world
model the machine can use to make decisions on future actions. In some cases,
ML is used not only for environment perception but also for decision making. A
challenge is determining how well ML will perform in a given application, espe-
cially for open-world problems with a virtually infinite variation of environmental
conditions, edge cases and potentially adversarial attacks [18].

One such application is automated driving systems (ADS) [15], which are
seen as a key technology for more efficient, available and safe mobility. However,
for such safety-critical systems, the challenge to determine ML performance also
becomes a safety issue. While there are several frameworks and standards, see
Sect. 2, for ML in safety-critical applications, and many methods available for
improving specification, testing and robustness, or performing run-time error
detection, we argue that there is still a gap when it comes to analysing exactly
how the available methods can contribute to fulfilling the safety requirements.

As a step towards a better understanding of how to combine the available
methods and metrics for ML performance with the need for safety assurance, this
paper analyses Out-of-Distribution (OoD) detection in light of a safety lifecycle.
The general concept of OoD detection is to distinguish known objects/samples
from unknown, e.g., detecting if an input to the ML model is similar enough such
that the model may provide an accurate prediction, something that is less likely
for a sample of an unknown distribution. Based on this analysis, we identified
the following potential roles for OoD detection in a safety lifecycle:

– Development phase: During development it may be used to identify limita-
tions in the training dataset through highlighting scenarios where the detec-
tion rate is below the required pass/fail threshold. Alternatively, it can suggest
operational design domain (ODD) [15] reduction if certain scenarios are not
fulfilling the allocated safety requirements.

– Shadow mode: From a continuous experimentation and deployment per-
spective, it could be used to test the expansion of ODD boundaries and
highlight scenarios where more training data is needed.

– Operational phase: During run-time, OoD detection may help to identify
uncertainties in the deep neural network (DNN) and trigger safe fallback
routines if the uncertainty in the model goes above pre-defined threshold.

The remainder of this paper connects OoD detection to state-of-the-art
safety-related research, followed by a description on how to incorporate OoD

Out-of-Distribution Detection as Support for Autonomous 235

detection as a safety measure for different stages of the lifecycle of ML models in
an ADS. Our vision is that this work will inspire more experimental work that
demonstrates the effect on safety for various ML improvement techniques.

2 Related Work

The functional safety standard ISO 26262 [10] is essential in automotive devel-
opment. It deals with hazards caused by technical failures due to random and
systematic faults in the system’s hardware or software. However, the existing
version does not fully cover safety requirements of ADS features relying on envi-
ronment perception or ML [17]. A major issue with ML based systems is that
they are not fully specifiable, while ISO 26262 implicitly assumes that all func-
tionality is specified [8,16,17].

Increased automation raised the need to complement ISO 26262 with the
safety of the intended functionality standard ISO 21448 (SOTIF) [12] dealing
with hazards due to functional insufficiencies in the absence of system failures.
Potential hazardous behaviour includes the inability to correctly perceive the
environment, the lack of robustness with respect to sensor input variations, and
unexpected behaviour by the decision making algorithm. All factors relevant for
ML based solutions. The product development activities specified in ISO 21448
can be carried out in parallel with the activities in ISO 26262 as illustrated
in Fig, 1. Other relevant standardization works in progress related to safety
assessment of road vehicles relying on ML include ISO/IEC TR 24029, ISO/IEC
AWI TR 5469, and ISO/AWI PAS 8800.

Burton et al. presented a work about safety assurance of ML for perception
functions including an analysis of ISO 26262 and ISO 21448 [3]. The authors argue
that due to the typical failure modes and performance limitations of ML, an abso-
lute level of correctness is infeasible. Instead, in line with ISO 21448, quantitative
assurance targets are required defining an acceptable limit to the probability that
guarantees cannot be met. Mohseni et al. presented an extensive review and pro-
pose a taxonomy of ML safety that maps state-of-the-art ML techniques to key

Verification
test

Hardware and software development

Vehicle
validation

test

Technical
safety

concept

10
. E

va
lu

at
io

n
of

 k
no

w
n

sc
en

ar
io

s

11
. E

va
lu

at
io

n
of

 u
nk

no
w

n
sc

en
ar

io
s

Functional
safety

concept

Hazard
analysis
and risk

assessment

Item
definition

6. Identification
and evaluation

of hazards

5. Specification and design.

8. Functional m
odifications

addressing SO
TIF-related risks

7. Identification

and evaluation of

potential functional

insufficiencies and

potential triggering

conditions

9. Definition of the verification and validation strategy

12. Evaluation of the
achievement of the SOTIF

Functional safety
assessment

ISO 26262 process steps. ISO 21448 (SOTIF) process steps.Colours

Fig. 1. Possible combined ISO 26262 and ISO 21448 development cycle (based on [12]).

236 J. Henriksson et al.

safety engineering strategies [13]. Due to the lack of verification techniques for deep
neural networks, ML model validation commonly relies on accuracy measurements
on different large tests sets to cover the targeted ODD. This is an important metric
of the success of the algorithm, but it fails to capture the model’s confidence in its
predictions. For example, if an image classifier trained to identify pedestrians and
road signs was presented with a billboard showcasing a person, and the model had
not encountered such examples during training, it could output class probabilities
from anywhere between 100% human to 100% road sign. What these probabilities
fail to show is the model’s lacking confidence.

Borg et al. [1] studies an autonomous emergency breaking (AEB) system
constructed in a simulator. The approach incorporates a safety-cage implemented
through a variational autoencoder to detect samples that are OoD, and uses the
simulator to do rigorous testing such that the system passes safety requirements.
The requirements are assigned to the ML model that operates on the front
looking camera. The same approach is used in this paper.

OoD detection is one way of dealing with the fact that data used to train an
ML model rarely covers all possible scenarios the model will face when put into
production. OoD deals with this open world assumption by dividing data into In-
Distribution (ID) and OoD, where ID is typically data close to what was seen dur-
ing training and OoD is unrecognized data. In the article [19] Yang et al. presents
a unified framework for generalized OoD detection. This framework will be used
as a base for discussing the potential of OoD detection in the ML-lifecycle.

Yang et al. [19] divides the larger subject of general OoD detection into
sub-topics, namely: Anomaly detection, Novelty detection, Open set recogni-
tion/OoD detection, and outlier detection. The split is motivated with four
dichotomies: whether covariate or semantic shift is detected; whether the ID set
is treated as a single or multiple classes; whether ID classification is required;
and whether the method uses inductive or transductive reasoning. Covariate and
sematic shift refers to a difference between the data distributions of the training
and testing sets, the two shifts differ in whether the distribution change occurs
in the input data or the labels respectively. Inductive reasoning makes use of the
entire dataset to make specific inferences on said data, this differs from trans-
ductive reasoning that attempts to learn general rules from a training dataset
which is later applied to a test dataset.

The binary classification between ID and OoD, i.e., Anomaly and Novelty
Detection, typically treats the entire ID as one class [19]. One of its applications
is detecting anomalies in data streams and can be used for data mining [14,19].
An unexplored area within this concept is monitoring data streams from vehicles
to identify uncommon traffic scenes.

Open Set Recognition (OSR) and OoD detection are closely related to each
other and differentiate themselves from the other approaches by not limiting the
detection to binary classification of ID or OoD, but instead allowing multi-class
classification of ID samples while still classifying OoD samples as such [19]. OSR
and OoD detection is not limited to simple image classification, examples of other
areas where it has been applied is object detection [5,7], image segmentation [4],
and 3D object detection [9].

Out-of-Distribution Detection as Support for Autonomous 237

Fig. 2. View of lifecycle for ML based system (inspired by [3,11,12]).

3 Methodology

A possible methodology covering the safety lifecycle for an ML based system is
shown in Fig. 2. The lifecycle is inspired by the work of Burton et al. [3] and
is compatible with the ISO 26262 and ISO 21448 development cycle shown in
Fig. 1. On the left side system level requirements are shown including safety
goal requirements. In the next step these are broken down to ML related safety
requirements that are input to the ML development phase.

A safety lifecycle typically starts by deriving safety goals, which are the
top-level safety requirements, using hazard analysis and risk assessment. These
safety goals are addressed through refined safety requirements introduced at dif-
ferent stages of the lifecycle. Figure 2 visualizes how the safety lifecycle can be
extended for ML components using an iterative process that aims to extract
safety artefacts and refine safety requirements throughout the development pro-
cess to ensure correct behaviour during operation.

An issue with safety goals is the abstraction level. As they will typically
express safe behaviour on vehicle level, refinement to safety requirements for
different subsystems of the ADS will be necessary. Our suggestion is to construct
a system abstraction to aid the refinement of relevant safety requirements to the
respective systems. The abstraction is further elaborated in Sect. 3.1.

Incorporating ML into ADS has been summarized as challenging due to the
inherent lack of understanding the ML behavior. Safety requirements can still
be applied to systems that incorporate ML, as described in SOTIF. However,
determining which methods, such as pass or fail criteria, to use in order to show
compliance with the safety requirements are still lacking, both from academia
and industry. We propose in this paper the OoD detection method as one poten-
tial criteria to determine the compliance level of ML safety requirements. We
describe how this technique can be used in the development stage of the lifecy-
cle in Sect. 3.2 and in the verification and operational stages of the lifecycle in
Sect. 3.3.

238 J. Henriksson et al.

Fig. 3. Photo of an AEB equipped vehicle approaching a cross walk, illustrating a
scene in the use case. Brackets indicate objects that must be included in the ODD.
Arrows are used to illustrate possible sources of harm.

3.1 Autonomous Emergency Breaking Use-Case

As a relatively simple example to demonstrate the ML safety lifecycle we use
an Autonomous Emergency Breaking (AEB) system. Among other goals, this
system aims to avoid collisions with pedestrians by performing emergency breaks
when said collisions are predicted. A scene from such a use case is shown in Fig. 3
with brackets indicating some of the objects that must be included in the ODD
description for the AEB. Note that a complete ODD description must include
much more information [6].

As mentioned, common practice in the automotive domain to define the
high level safety goals and a safety concept is to follow the process shown in
Fig. 1, starting with an item definition followed by a hazard analysis and risk
assessment. For the AEB example, one safety goal resulting from this analysis
could be to avoid harm to pedestrians. This is illustrated in Fig. 3 with arrows
and the text ’harm’ pointing to objects critical to avoid.

For a systematical breakdown of the top level safety goal to concrete safety
requirements we propose to define the abstraction levels visualized in Fig. 4. The
abstraction levels are defined as:

– ODD: The operational design domain defined as a set of operating conditions.
Some relevant conditions are visualized in Fig. 3.

– AV: Autonomous Road Vehicle equipped with an AEB feature.
– AEB: The autonomous emergency braking system.
– Sensor/Perception System: Forward Looking Camera containing the DNN

based ML algorithm.

Out-of-Distribution Detection as Support for Autonomous 239

Fig. 4. A figure showing our proposed abstraction levels, in this case specified to our
AEB use-case.

The high-level safety requirements are refined and allocated to the different
systems in Fig. 4 after a fault tree analysis and system decomposition. We ana-
lyzed and designed the forward looking camera in the ’Sensor/Perception Plat-
form’ to satisfy the allocated safety requirements. For that purpose we developed
a technical safety concept and derived technical safety requirements towards the
perception model within the forward looking camera, which uses a DNN algo-
rithm for object detection. Here we have used and modified safety requirements
allocated to machine learning from [1] alongside the lifecycle in Fig. 2.

Below are some examples from the derived ML safety-related requirements
that are allocated to the ML component [1]:

– SYS1-FLC-PER-REQ 1: The false negative rate of the perception algorithm
within the forward looking camera shall not exceed 7% within 50ms.

– SYS1-FLC-PER-REQ 2: The false positive per image of the perception algo-
rithm within the forward looking camera shall not exceed 0.1% within 80ms.

3.2 Machine Learning Development

With the initial safety requirements for the ML component in place, the ML
development block in Fig. 2 can be pursued. Within the model optimization
block, the process for training the model is defined, which encompasses the
labeling format to fulfill the functional requirements, the model architecture
type, and the optimization methods (such as the optimization strategy, training
length, and loss evaluation). The block also marks the first use of OoD detec-
tion to identify underrepresented areas in the ODD and set the threshold for
classifying data as ID or OoD.

If the training results are insufficient, two options are available: either improv-
ing the model performance or adjusting the functional scope. To enhance the
model, acquiring additional training data or applying better architectures, tech-
niques, or mitigation strategies may help. However, if the performance still falls
short, adjusting the functional scope through refining the requirements or reduc-
ing the size of the ODD, particularly in weakly covered areas identified by the

240 J. Henriksson et al.

Fig. 5. The distribution of the models input data. The crosses mark discrete data
points, the blue region corresponds ID regions, and the red region represents the OoD
region. (Color figure online)

OoD detection, becomes necessary. Figure 5 offers a visual representation of the
relationship between the ODD, the OoD, and the ID. In the figure, crosses denote
discrete data points in the input data space, while the blue and red regions indi-
cate areas that the model has comprehended (ID) or failed to (OoD). For the
depicted case, the model has not covered all regions inside the ODD, therefore,
the ODD must either be reduced or more data must be collected.

To determine how ML errors may impact the safety, we followed the safety
analysis of Burton et al. [3]. Some of their conclusions can be seen in Fig. 6, these
helped inform us how to formulate our safety requirements. One of the main
causes of these safety errors lies in distributional shift, which can be mitigated
using OoD as described in this section.

3.3 Remaining Lifecyle

Once the AEB System that incorporates ML has demonstrated acceptable per-
formance during the ML development phase, the system level integration and
verification and validation process can begin. During this step, the system level
performance is evaluated to confirm that it complies with the previously gener-
ated safety requirements, thus ensuring that the system level safety argumenta-
tion is valid.

As part of verifying that the safety requirements are fulfilled, one can use
shadow mode operation, i.e., the feature is deployed in the field but not allowed
to control the vehicle. Instead the feature continuously collects and categorizes
data into ID or OoD in the background. This allows for the identification of
scenarios that are still challenging for the model, which in turn provides insights
into how the current ML component can be improved through more focused data
collection or ODD modification.

Subsequently, the AV may be deployed. It is at this point that operational
monitoring commences, through the utilization of OoD detection to identify
scenarios where the system is operating in uncertain conditions, such as those
that were not well represented during the training phase and may not have been

Out-of-Distribution Detection as Support for Autonomous 241

Fig. 6. Fault-model of safety-related ML errors (based on [2]).

generalized appropriately or at the edge of the ODD. If such scenarios arise, the
system may revert to a safe state, such as achieving a minimal risk condition
(where the vehicle is at a standstill) or transferring control to a human driver.

4 Conclusion and Outlook

This paper has introduced system abstraction levels for an ADS that allows
for a breakdown of safety goals into safety requirements that can directly be
allocated to the necessary systems, especially with a focus on how to derive
safety requirements for subsystems making use of ML. This allows for separation
of the existing concerns in the system, e.g., faults, errors or insufficiencies in the
functionality.

OoD detection is one technique that is beneficial to validate the system to
be within acceptable error margins. The technique allows for risk mitigation in
ML components as it aims to reduce the false positive and negative samples. It
is shown how this method can be used for varying purposes at different stages
of the safety lifecycle.

Going forward, more experiments are needed on safety assurance techniques
for ML to establish the actual performance of the system. For instance, while
we have outlined how one can use OoD in the safety lifecycle, the extent of the
contribution from this technique towards fulfilling the safety requirements is still
unknown and will need more extensive experiments. An aim with this work is
also to highlight the need to combine runtime evaluation techniques to combat
the uncertainty that exist within the ML component.

Our vision and hope is to inspire more experimental evaluation and analysis
into how OoD and other methods from the ML domain can be applied in a
safety lifecycle, in particular how each method can help fulfill safety requirements
allocated to ML components. Such knowledge will be crucial for determining how
and when ML can be used in the design of safety-critical systems.

References

1. Borg, M., et al.: Ergo, smirk is safe: A safety case for a machine learning component
in a pedestrian automatic emergency brake system. arXiv preprint arXiv:2204.
07874 (2022)

http://arxiv.org/abs/2204.07874
http://arxiv.org/abs/2204.07874

242 J. Henriksson et al.

2. Burton, S.: A causal model of safety assurance for machine learning. arXiv preprint
arXiv:2201.05451 (2022). https://doi.org/10.48550/arXiv.2201.05451

3. Burton, S., Hellert, C., Hüger, F., Mock, M., Rohatschek, A.: Safety Assurance of
Machine Learning for Perception Functions. In: Deep Neural Networks and Data for
Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards
Safety, pp. 335–358. Springer International Publishing (2022)

4. Cen, J., Yun, P., Cai, J., Wang, M.Y., Liu, M.: Deep metric learning for open world
semantic segmentation. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 15333–15342 (2021)

5. Du, X., Wang, X., Gozum, G., Li, Y.: Unknown-aware object detection: Learning
what you don’t know from videos in the wild. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13678–13688 (2022)

6. Gyllenhammar, M., et al.: Towards an operational design domain that supports the
safety argumentation of an automated driving system. In: Proceedings of ERTS
2020. Toulouse, France (2020)

7. Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., Song,
D.: Scaling out-of-distribution detection for real-world settings. arXiv preprint
arXiv:1911.11132 (2019)

8. Hoss, M., Scholtes, M., Eckstein, L.: A Review of Testing Object-Based Environ-
ment Perception for Safe Automated Driving. Autom. Innov. 5(3), 223–250 (2022).
https://doi.org/10.1007/s42154-021-00172-y

9. Huang, C., et al.: Out-of-distribution detection for lidar-based 3d object detection.
arXiv preprint arXiv:2209.14435 (2022)

10. ISO: 26262:2018 Road Vehicles - Functional Safety. ISO (2018)
11. ISO: ISO/TR 4804:2020 Road Vehicles - Safety and Cybersecurity for Automated

Driving Systems - Design, Verification and Validation. ISO (2020)
12. ISO: 21448:2022 Road Vehicles - Safety of the Intended Functionality. ISO (2022)
13. Mohseni, S., Wang, H., Yu, Z., Xiao, C., Wang, Z., Yadawa, J.: Taxonomy of

Machine Learning Safety: A Survey and Primer. arXiv:2106.04823 [cs] (Mar 2022)
14. Ramachandra, B., Jones, M., Vatsavai, R.R.: A survey of single-scene video

anomaly detection. IEEE Trans. Pattern Analysis Mach. Intell. 44, 2293–2312
(2020)

15. SAE: J3016 Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles. Tech. Rep. J3016:2021, SAE Int. (Apr 2021)

16. Salay, R., Czarnecki, K.: Using Machine Learning Safely in Automotive Software:
An Assessment and Adaption of Software Process Requirements in ISO 26262.
arXiv:1808.01614 [cs, stat] (Aug 2018)

17. Salay, R., Queiroz, R., Czarnecki, K.: An Analysis of ISO 26262: Using Machine
Learning Safely in Automotive Software. Arxiv preprint 1709.02435. (2017)

18. Tencent Keen Security Lab: Experimental Security Research of Tesla Autopi-
lot. Tech. rep., (Mar 2019), https://keenlab.tencent.com/en/whitepapers/
Experimental Security Research of Tesla Autopilot.pdf

19. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: A
survey. arXiv preprint arXiv:2110.11334 (2021)

http://arxiv.org/abs/2201.05451
https://doi.org/10.48550/arXiv.2201.05451
http://arxiv.org/abs/1911.11132
https://doi.org/10.1007/s42154-021-00172-y
http://arxiv.org/abs/2209.14435
http://arxiv.org/abs/2106.04823
http://arxiv.org/abs/1808.01614
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
http://arxiv.org/abs/2110.11334

Crowd RE

Automatically Classifying Kano Model
Factors in App Reviews

Michelle Binder1 , Annika Vogt1, Adrian Bajraktari2 ,
and Andreas Vogelsang2(B)

1 University of Cologne, Cologne, Germany
{mbinder1,avogt16}@smail.uni-koeln.de

2 Computer Science, University of Cologne, Cologne, Germany
{bajraktari,vogelsang}@cs.uni-koeln.de

Abstract. [Context and motivation] Requirements assessment by
means of the Kano model is common practice. As suggested by the orig-
inal authors, these assessments are done by interviewing stakeholders
and asking them about the level of satisfaction if a certain feature is
well implemented and the level of dissatisfaction if a feature is not or not
well implemented. [Question/problem] Assessments via interviews are
time-consuming, expensive, and can only capture the opinion of a limited
set of stakeholders. [Principal ideas/results] We investigate the pos-
sibility to extract Kano model factors (basic needs, performance factors,
delighters, irrelevant) from a large set of user feedback (i.e., app reviews).
We implemented, trained, and tested several classifiers on a set of 2,592
reviews. In a 10-fold cross-validation, a BERT-based classifier performed
best with an accuracy of 92.8%. To assess the classifiers’ generalization,
we additionally tested them on another independent set of 1,622 app
reviews. The accuracy of the best classifier dropped to 72.5%. We also
show that misclassifications correlate with human disagreement on the
labels. [Contribution] Our approach is a lightweight and automated
alternative for identifying Kano model factors from a large set of user
feedback. The limited accuracy of the approach is an inherent problem of
missing information about the context in app reviews compared to com-
prehensive interviews, which also makes it hard for humans to extract
the factors correctly.

Keywords: Requirements Analysis · Kano Model · App Store
Analytics · Machine Learning · NLP

1 Introduction

Figuring out which features and related requirements are important to stake-
holders and, thus, should be implemented first or with special care is one of the
core activities in Requirements Engineering (RE). There is a plethora of require-
ments prioritization techniques, in which usually costs and benefits are weighed
up either by expert assessment or by stakeholder involvement [4,13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 245–261, 2023.
https://doi.org/10.1007/978-3-031-29786-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_17&domain=pdf
http://orcid.org/0000-0002-8657-3963
http://orcid.org/0000-0001-5997-7156
http://orcid.org/0000-0003-1041-0815
https://doi.org/10.1007/978-3-031-29786-1_17

246 M. Binder et al.

One of the most well-known and applied techniques in requirements pri-
oritization is the Kano model [17]. It is based on the two-factor theory by
Herzberg et al. [14], which says that a factor that leads to satisfaction does
not necessarily lead to dissatisfaction if absent and vice versa. The Kano model
categorizes product features into a set of five factors, which have different
satisfaction–dissatisfaction profiles.

Several studies unanimously report that scalability is one of the major limi-
tations of requirements prioritization techniques [1,4,16]. This also holds for the
assessment of product features according to the Kano model. The categorization
of product features into the five Kano factors is done by interviewing or sur-
veying stakeholders. This process is laborious and limited to the set of available
stakeholders and a set of predefined requirements under investigation.

We investigate the possibility to identify Kano model factors automatically
from a large set of user feedback to increase scalability and broaden the focus
to a large set of users and their specific feedback. We implemented, trained, and
tested several classifiers to explore their ability to identify Kano model factors
in app reviews. The resulting categorization is, first of all, a categorization of
user feedback, which may later be related to product features either manually
or automatically [2,11].

We trained and evaluated our classifiers on two datasets, which were collected
by independent research groups and which we labeled manually. To do so, we
created a labeling guideline and labeled a large part of the data independently
by two labelers. We used random undersampling to create a balanced set of
2,592 app reviews from the larger of the two datasets. We used this dataset
for training and testing the classifiers in terms of a 10-fold cross validation. We
used the second dataset to test the classifiers on 1,622 unseen and independently
collected app reviews. Finally, we compared misclassifications of the classifiers
with the initial labels of the two human labelers and whether they agreed or
disagreed initially. In this paper, we make the following contributions:

– We find that Kano model factors can, to some degree, be automatically iden-
tified in app reviews.

– We find that our Kano model classifiers still lack sufficient generalization to
other datasets.

– We find that misclassifications, to some extent, correlate with human dis-
agreement on the labels.

– We publish two datasets with 8,126 app reviews overall, with labels repre-
senting Kano model factors.

Our approach is a lightweight and automated alternative for identifying Kano
model factors from a large set of user feedback. The limited accuracy of the
approach is an inherent problem of missing information about the context in
app reviews compared to comprehensive interviews, which also makes it hard
for humans to extract the factors correctly.

Availability of Data and Code: The datasets including the Kano model labels
and the code for all classifiers and analysis procedures are publicly available.1

1 https://doi.org/10.6084/m9.figshare.21618858.

https://doi.org/10.6084/m9.figshare.21618858

Automatically Classifying Kano Model Factors in App Reviews 247

2 Background and Related Work

In this section, we will introduce the Kano model and present related work in
the field of app store analytics and natural language processing (NLP).

2.1 Kano Model

The Kano model [17] describes the relationship between customer satisfaction
and the implementation status of quality characteristics of a product. Kano
distinguishes between five categories:

– Basic features are perceived by users as intrinsic and “normal” for a prod-
uct type. They only become aware of them when they are not available or
not working (implicit expectations). Their presence does not lead to any sat-
isfaction, while their absence leads to dissatisfaction.

– Performance features lead to dissatisfaction if not or poorly implemented,
while leading to satisfaction if fully implemented.

– Delighters are features the customer is not expecting. Their presence leads
to satisfaction, while they do not lead to dissatisfaction if not implemented.

– Irrelevant features lead neither to satisfaction nor to dissatisfaction.
– Rejection features lead to dissatisfaction if they are implemented.

In this paper, we ignore rejection features since their definition in the literature
is ambiguous. The effect of their absence is described as causing dissatisfaction
or as causing neither satisfaction nor dissatisfaction. Many sources only mention
the first three factors of the Kano model.

Fig. 1. Visualization of the Kano model.

Figure 1 shows a common representation of the model including rejection
features according to the former interpretation. Features are rarely universal,
i.e., what is a basic feature for one customer may be a performance feature
for another, etc. In addition, there is a temporal aspect to these categories. As
time goes on, delighters become performance features and performance features
become basic features.

248 M. Binder et al.

In his original work, Kano proposed to conduct interviews with stakeholders
to categorize features into these classes. However, due to the massive amount of
users of apps and the amount of reviews in app stores, neither interviews nor
manual categorization are feasible for app developers.

2.2 Crowd-Based RE and App Store Analytics

User feedback is an important asset in the development of apps. A study [25]
on the usage of analytics tools in app stores showed that tools only providing
sales, download, and demographic data are not of high interest for developers.
However, developers perceive tools that support app review analytics as helpful.
Wang et al. [31] did a systematic mapping study on crowd-sourced requirements
engineering using user feedback. They found that, in many works, user feed-
back has been used in requirements elicitation and requirements analysis mainly,
but also in requirements management. Wouters et al. [34] created a method to
integrate crowd-based requirements engineering into development. The crowd
is responsible for generating, voting, and discussing ideas, while the remaining
activities are done by the development team. Lim et al. [21] did a systematic
literature review on data-driven requirements elicitation. They found that there
are seven main sources of data used in the literature: online reviews, blogs,
forums, software repositories, usage data, sensor readings and mailing list. Fur-
ther, the main methods used were categorized as machine learning, rule-based
classification, model-oriented, topic modeling and clustering.

Reviews in app stores are a rich source of user feedback for crowd-based
RE [10]. Pagano and Maalej [27] conducted an empirical study on user feedback
in app stores, showing that app stores can serve as communication channels
between users and developers, allowing to continuously receive bug reports, fea-
ture requests, praise, etc. Developers can use reviews to understand new user
needs since they provide more insight than plain statistics into how apps are
actually used. They further find that tools should support automatic analy-
ses of user feedback. There have been several approaches to automatic feature
extraction, e.g., using sentiment analysis [11] or a combination of NLP, meta-
data, text classification and sentiment analysis [24]. Maalej et al. [23] found that
review analytics tools are promising for review classification, as a classification
accuracy of 85% to 92% is possible. They conducted interviews with nine prac-
titioners to evaluate their analytics tool. They do not often consider reviews,
as the manual extraction of relevant information is too time consuming. Also,
they usually gather input from multiple sources, e.g., emails, test groups, etc.
However, they perceive user reviews as a promising source of information when
assisted by tools to filter and categorize them automatically.

We found two papers, where the authors suggested automatic approaches to
identify Kano model factors in user feedback. AlAmoudi et al. [2] analyzed app
store reviews and categorized them according to the Kano model by using NLP
techniques and clustering. They achieved high precision but low recall for basic
features, high recall but low precision for delighter features and mid to low results
on performance features. Lee et al. [20] used sentiment analysis to categorize

Automatically Classifying Kano Model Factors in App Reviews 249

hotel service ratings into Kano factors. They achieved rather low results and
concluded that the reviews tend to be more about personal experience with a
service, rather than an overall evaluation.

2.3 NLP and Machine Learning

Natural language, due to its easy to write and comprehend nature, is the tradi-
tional way to document requirements. In the last decades, requirement engineers
studied many aspects of NLP, ranging from modeling and abstracting key ele-
ments to automatic classification and clustering [6]. Two key challenges when
using NLP for RE are availability of proper datasets and domain adaptation of
models [6]. Applying NLP tools to RE task has developed from using traditional
machine learning techniques on hand-crafted features like bag of words [24] to
deep learning techniques where the input is encoded with word embeddings [32].
Recently, transfer learning approaches that work on large pretrained language
models (e.g., BERT) showed the best results for many RE tasks [9,12,15,29].

3 Research Methodology

Our research is exploratory in the sense that we did not investigate any specific
hypotheses. Instead, we propose and implement several automatic solutions and
evaluate their performance using a quantitative evaluation study. Figure 2 shows
an overview of our research design.

Fig. 2. Overview of research design

We used two public datasets that we labeled manually. More details on the
labeling process will be provided in Sect. 3.1. We used these datasets to train and

250 M. Binder et al.

test several classifiers: two simple solutions that served as baselines (keyword-
driven and logistic regression) and four variations of transfer learning classifiers
(BERT, RoBERTa, RemBERT, and ALBERT). We used these classifiers from
the BERT family since they showed good performance in similar RE tasks [9,12,
15,29] and they are conveniently offered by ML libraries2. More details on the
classifiers will be given in Sect. 4. With this research design, we want to answer
the following research questions:

RQ1: What performance do automatic classifiers achieve in identifying
and distinguishing Kano model factors in app reviews? To answer this
research question, we evaluate several classifiers (simpler and BERT-based) and
compare their performance.

RQ2: How well do the classifiers generalize when applied to unseen
app reviews? To answer this research question, we evaluate each model on a
dataset that is completely different from the training data with respect to the
contained reviews and to the time period in which they were collected. Fur-
ther, we perform a 10-fold cross-validation on a combination of both datasets to
investigate whether a more diverse dataset improves the classifiers’ performance.

RQ3: Does misclassification of automatic classifiers correlate with dis-
agreement of human judgement? To answer this research question, we assess
the relationship between the cases that the classifier labeled (in)correctly and
the cases where the human annotators (dis)agreed.

3.1 Studied Datasets and Manual Labeling

For our work, we examined two independent datasets of app reviews published in
the Apple App Store (iOS) and the Google Play Store (Android). The first data
set (called Stanik dataset in the following) was assembled by Stanik et al. [30] and
contains 6,070 reviews. The second data set (called Brunotte dataset in the fol-
lowing) was assembled by Brunotte [3]. While the recently published dataset [3]
contains a lot more reviews, we worked on a subset of 1,622 of these reviews that
the authors sent us earlier.

We manually labeled all reviews according to the Kano model either as
“basic”, “performance”, “delighter”, or “irrelevant”. We considered both func-
tional (i.e., implemented) and dysfunctional (i.e., not implemented) features. We
labeled the reviews by considering only the review text. To ensure a consistent
labeling, we designed a labeling guideline that is shown in Table 1. If a review
contained indications of more than one factor, we focused on the factor that was
most prominent.

The reviews of the Brunotte dataset have been labeled by two independent
researchers. The inter-rater agreement in terms of Cohen’s Kappa was κ = 0.7,
which may represent a “substantial agreement” [19]. If the two labelers disagreed,
we involved a third labeler as a tie breaker. In the labeled dataset, we marked
2 We used the Simple Transformers library: https://github.com/ThilinaRajapakse/

simpletransformers.

https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers

Automatically Classifying Kano Model Factors in App Reviews 251

Table 1. Kano labeling guideline

Basic Performance

– user discontinues using the app or
switches to alternative
– app is not usable (e.g., crashes, log
in not possible)
– lack of a basic feature results in a
bad rating

– moderate amount of expressed joy
/ annoyance
– constructive criticism / suggestions

Delighter Irrelevant

– app is favored and recommended
over similar apps due to these features
– user is a long term user due to these
features
– praise or suggestion for addition

– cannot be labeled as any other cat-
egory
– no clear reference to a distinct
feature

whether the label of a review was unanimously assigned or if there was a need
for a tie breaker. The resulting distributions of labels in the two datasets are
depicted in Table 2.

Table 2. Distribution of labels in the datasets

Dataset Total Basic Performance Delighter Irrelevant

Stanik dataset [30] 6,070 1,440 1,530 648 2,452

Brunotte dataset [3] 1,622 1,102 395 95 30

3.2 General Data Preprocessing

Data preprocessing for all classifiers consisted of the following steps: (1) We
removed duplicates, non-English reviews, and reviews that consisted only of
characters but no words. (2) We converted the labels into numerical values.
Further preprocessing relevant only for specific classifiers is described in the
sections of the classifiers.

3.3 Evaluation Strategy

To answer the research questions, we trained and tested several classifiers. For
both RQ1 and RQ2, we used the Stanik dataset (or a subset of it) as training set.
To mitigate the class imbalance, we performed random undersampling3 to create
a balanced dataset with 2,592 reviews (648 reviews per class). To mitigate the

3 Random undersampling deletes examples from the majority class randomly until all
classes have equally many samples.

252 M. Binder et al.

random effect of undersampling, we did this five times and report the average
performance metrics achieved with the five training samples. We report standard
evaluation metrics (accuracy, precision, recall, F1).

For RQ1 (general performance), we performed a 10-fold cross-validation on
the undersampled Stanik dataset.

For RQ2 (performance on unseen data), we used the undersampled Stanik
dataset for training and the Brunotte dataset for testing. Additionally, we com-
bined both original datasets, undersampled the combined dataset to create a
balanced dataset of 2,936 reviews (743 per class), and performed a 10-fold cross-
validation on this combined dataset.

For RQ3 (correlation between misclassification and human disagreement), we
split the Brunotte dataset into two subsets: one containing the reviews where
the two labelers initially agreed on the label, and one containing the reviews
where the two labelers initially disagreed on the label. We analyze the accuracy
of the classifiers for these two subsets. In addition, we calculate a coefficient for
the correlation between initial human disagreement and misclassifications of the
classifiers.

4 Kano Factor Classifier

In this section, we describe the classifiers we implemented and tested.

4.1 Baseline Algorithms

Besides the preprocessing described in Sect. 3.2, we performed tokenization, stop-
word removal, and computed tf-idf values for both baseline classifiers. For each
non-stopword term t in the training set D and each label � ∈ {basic, delighter,
irrelevant, performance}, we calculated the term frequency-inverse document
frequency tf-idf(t,D�,D), where D� is the set of all reviews in the training set
that are labeled as �. For both approaches we used functionalities of the scikit-
learn library [28].

Keyword-Driven Classifier. We want a classifier that classifies a review based
on the distribution of keywords among each class. For each review R and each
label �, we calculate the sum of the tf-idf values of all terms contained in the
review: M� =

∑
t∈R tfidf(t,D�,D) and then categorize the review by the label

arg max� M�, which maximizes the sum of the tf-idf values.

Logistic Regression. As a second baseline algorithm, we implemented a sim-
ple tf-idf based logistic regression, where we provide the document-term matrix
containing all tf-idf values per review and non-stopword as input.

Automatically Classifying Kano Model Factors in App Reviews 253

4.2 Transfer Learning Classifiers

Transfer learning approaches use language models that have been pretrained on
large sets of textual data (unsupervised learning). These language models are
afterwards finetuned with labeled data from the task and domain they are sup-
posed to be transferred to (supervised learning). We implemented four transfer
learning classifiers that use different pretrained language models namely:

– BERT [8], a language representation model for pretraining deep bidirectional
representations from unlabeled text.

– RoBERTa [22], an optimized version of BERT with more training data,
slightly different training parameters, and different masking procedure.

– RemBERT [5], a pretrained language model with decoupled embeddings.
– ALBERT [18], a lite variant of BERT with less parameters resulting in faster

training and less memory consumption.

By using the Simple Transformers library4 to implement these classifiers, addi-
tional preprocessing was kept to a minimum, as this is already handled by the
library. We used the default values for all hyperparameters.

5 Results

In this section, we present the results of our evaluation. For this, we divide
the section into three parts, each covering one of our research questions. We
performed each run on five different undersampled sets. The values in the tables
are averages of each reported metric of the five runs.

5.1 RQ1: Performance of Classifiers

Table 3. Performance results from a 10-fold cross-validation on Stanik dataset in terms
of accuracy (Acc.) and precision (Prec.), recall (Rec.), and F1-score (F1) for each label.

Basic Performance Delighter Irrelevant

Classifier Acc. Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Keyword-Driven .514 .589 .793 .675 .494 .521 .505 .411 .552 .467 .810 .194 .303

Logistic Regression .663 .790 .824 .805 .568 .535 .549 .587 .559 .568 .698 .735 .714

RoBERTa .918 .951 .967 .959 .880 .851 .864 .875 .928 .899 .972 .924 .947

BERT .928 .960 .972 .966 .896 .871 .883 .894 .927 .910 .964 .941 .952

RemBERT .633 .586 .673 .626 .518 .550 .534 .538 .630 .580 .596 .683 .637

ALBERT .838 .893 .928 .909 .760 .721 .740 .796 .823 .809 .901 .878 .888

Table 3 shows the performance metric scores each classifier achieved in a 10-fold
cross-validation on the Stanik dataset. The BERT classifier outperformed both
baseline classifiers and RemBERT by a magnitude, with an accuracy of 92.8%.

254 M. Binder et al.

BERT performs best across almost all labels and metrics, but RoBERTa’s scores
are very close to those of BERT. RoBERTa achieved slightly higher scores for
recall in delighter features (+0.1%) and precision in irrelevant features (+0.8%).
To answer RQ1, we can summarize that automated classifiers can identify and
distinguish Kano model factors with an accuracy of up to 92.8%.

5.2 RQ2: Generalization to Unseen Data

Table 4 shows the performance results of all tested classifiers when trained on the
entire Stanik dataset and tested on the Brunotte dataset. RoBERTa generally
performed best with an accuracy of 72.5%, but for irrelevant features, Rem-
BERT achieved a better recall than any other approach and ALBERT achieved
the highest precision. Also, for delighters, BERT achieved a better recall than
RoBERTa. Table 5 shows the results of a 10-fold cross validation on the combi-
nation of the Stanik dataset and the Brunotte dataset. Here, BERT is the clear
winner, as it performed best across all labels and metrics, with the only exception
being that RoBERTa, with +0.1%, had a negligible higher precision on irrele-
vant features. Again, the scores of BERT and RoBERTa are very close together.
BERT achieves a very good accuracy of 95.7%, which is a huge improvement
over the logistic regression classifier as best-performing baseline, only achieving
an accuracy of 60%.

Table 4. Performance results from a validation on the Brunotte dataset (training on
Stanik dataset) in terms of accuracy (Acc.) and precision (Prec.), recall (Rec.), and
F1-score (F1) for each label.

Basic Performance Delighter Irrelevant

Classifier Acc. Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Keyword-Driven .593 .800 .741 .770 .513 .208 .296 .143 .663 .235 .000 .000 .000

Logistic Regression .600 .858 .689 .764 .451 .360 .400 .181 .726 .289 .075 .100 .086

RoBERTa .725 .896 .783 .836 .515 .599 .553 .391 .781 .520 .353 .093 .147

BERT .682 .895 .734 .806 .461 .556 .504 .336 .804 .473 .381 .066 .112

RemBERT .488 .538 .475 .504 .354 .558 .433 .225 .423 .293 .304 .233 .264

ALBERT .660 .885 .715 .789 .432 .523 .473 .302 .770 .433 .466 .040 .072

Comparing the data from Tables 4 and 5, we can see significant differences.
In the 10-fold cross-validation setting, performed on the combination of both
datasets, we achieved very good results. In the setting where we trained on
the Stanik dataset and evaluated on the Brunotte dataset, we see significantly
lower metric scores. This indicates that, while the classifiers perform good when
applied to unseen but “similar” data, this is not the case when evaluated on
“unsimilar” data. By “similar”, we mean the characteristics of the datasets, as
each have been collected in different time periods, both cover different apps,
etc. We specifically see problems when applied to “unsimilar” data in terms of
delighter and irrelevant features, which is not the case in the other two evaluation

Automatically Classifying Kano Model Factors in App Reviews 255

Table 5. Performance results from a 10-fold cross validation on the combined dataset
(Stanik dataset and Brunotte dataset) in terms of accuracy (Acc.) and precision (Prec.),
recall (Rec.), and F1-score (F1) for each label.

Basic Performance Delighter Irrelevant

Classifier Acc. Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Keyword-Driven .482 .475 .826 .602 .436 .466 .445 .452 .428 .438 .822 .207 .330

Logistic Regression .655 .723 .811 .764 .544 .499 .519 .600 .574 .586 .725 .728 .725

RoBERTa .946 .965 .976 .969 .926 .900 .911 .914 .952 .932 .984 .960 .971

BERT .957 .971 .983 .978 .944 .923 .932 .940 .960 .949 .983 .972 .977

RemBERT .528 .416 .509 .458 .399 .468 .431 .413 .560 .474 .462 .580 .514

ALBERT .891 .923 .946 .934 .839 .819 .829 .866 .879 .872 .934 .923 .928

settings. This may be due to the time span that lies between the collection of
the Stanik dataset (2013–2015) and the Brunotte dataset (2021), as language
and culture in app reviews might have evolved, but also in accordance with the
Kano model, features that once were delighters now fall in different categories
and once irrelevant features may have become relevant. In contrast, features,
which then were basic features may still be basic features nowadays. To answer
RQ2, we can say that generalization to unseen and dissimilar app reviews is
moderate. Possible solution or mitigation approaches are discussed in Sect. 6.

5.3 RQ3: Correlation Between Misclassification and Human
Disagreement

Table 6 shows the accuracy of the classifiers when trained on the Stanik dataset
and tested on the reviews of the Brunotte dataset with consistent initial labels
and inconsistent initial labels. Further, for each classifier we computed the phi
coefficient (or mean square contingency coefficient) to denote the correlation
between misclassification and ambiguity of manual labeling. As binary variables,
we used Mis ∈ {0, 1} = {1 if classification is incorrect, 0 otherwise} and Diff ∈
{0, 1} = {1 if initial labels have been different, 0 otherwise}. The phi coefficient
is given in the last column of Table 6.

We see a significant difference in the accuracy of labels where the raters
agreed vs. labels where they disagreed, both for the baselines and for the BERT-
based classifiers. For RemBERT and the logisitic regression, we observed a neg-
ligible positive correlation (< 0.2). For the keyword-based classifier, RoBERTa,
BERT and ALBERT, we observed a weak positive correlation (0.2–0.3).

256 M. Binder et al.

Table 6. Accuracy results for classification on labels with initial agreement vs. initial
disagreement.

Classifier Accuracy Accuracy Phi

(agreed labels) (disagr. labels) Coeff.

Keyword-Driven .600 .292 .219

Logistic Regression .642 .293 .192

RoBERTa .775 .437 .269

BERT .726 .428 .229

RemBERT .509 .362 .094

ALBERT .703 .405 .224

To answer RQ3, we can say that all classifiers performed worse in terms
of accuracy on reviews that caused initial disagreement among human annota-
tors. The phi coefficients, though, are not impressively high and thus a strong
correlation is not clearly visible.

6 Discussion

In this section, we discuss our findings and its impact for research and practice.
We provide a critical analysis of its strengths, weaknesses, and the threats to
validity.

6.1 Impact in Practice

We think that our results are promising and show the potential for an automatic
solution with sufficient performance. In comparison to the largely manual original
Kano model analysis, an automatic approach is cheaper and scales better to
large sets of user feedback. The results may support requirements engineering
and decision making.

Comparison with Existing Approaches. Existing automated approaches [2,
20] try to mimic the original Kano analysis by identifying the sentiment in
user feedback, clustering it according to latent topics, and finally relating it
to certain product features. The reported evaluations, however, indicate low
predictive performance. AlAmoudi et al. [2] report F1-scores between 0.30 and
0.63 for three Kano model factors. Lee et al. [20] did not perform a quantitative
evaluation but report that “some meaningful results are found [. . .] This resulted
in the limitation of quantification of ‘Topic Modeling’ method.” We follow a
different approach and use supervised learning to predict the Kano model factors
directly from the text. Our results showed F1 scores above 0.9 for all Kano model
factors in the 10-fold cross validation on our combined dataset. Since the authors
of the two papers did not share their datasets, we were not able to perform a

Automatically Classifying Kano Model Factors in App Reviews 257

direct comparison but we are confident that our approach would outperform the
existing approaches also in a direct comparison.

Reviews are Missing Contextual Information. Our analysis of the labeling
process and the performance of the classifiers show that neither humans nor any
of our classifiers were able to always predict the Kano labels correctly (w.r.t.
to what our truth set defines as correct). This may be an inherent problem of
our approach to assess the Kano factors purely based on the text of a review.
App reviews are limited in size, lack contextual information, and do not offer
possibilities for further inquiries [25]. Therefore, the tone and sentiment that is
conveyed with the review also plays a role for assessing the factor. Apparently,
some of our tested classifiers were able to incorporate this at least to some degree.
On the other hand, assessing Kano model factors by analyzing app reviews
may always be less clear than the original assessment via specific interviews
or surveys.

Application and Usefulness of the Approach. While our study focuses on
the feasibility and the performance of the classifiers, an open question is how our
approach is perceived in a real world setting. We envision our approach to be used
as an assistant tool for requirements analysts. Therefore, the effectiveness needs
to be assessed in its context of use. Results from our performance evaluation
may not be transferable directly to its context of use since the use of tools also
affects working habits and perceptions of analysts (cf. [33]).

6.2 Impact for Research

Testing Generalization on Unseen Data is Important. Many studies
indicate the need to test classifiers on unseen and unconsidered data. Still, this
practice is not very common in software engineering research. Just recently,
Dell’Anna et al. [7] showed the importance of this step by applying two recently
published classifiers to unseen data and observed a significant decrease in per-
formance. In our study, we have seen a similar degradation in performance when
training on the Stanik dataset and testing on the Brunotte dataset, although
the two datasets are conceptually very similar and both are already diversified
by incorporating reviews of several apps. This result shows that more data may
be needed to train a classifier that generalizes well.

Hard for Humans, Hard for the Machine. Our results show a correlation
between misclassifications and human disagreement. This suggests that reviews
that were hard to classify for humans tend to also be hard to classify for the
machine. This is consistent for all classifiers that we tested. To illustrate this,
consider the following review:
“Most convenient calories counter app I’ve ever used and I’ve probably used them
all, super easy to add foods on your own and also cheap, super recommended”

258 M. Binder et al.

We labeled this review as performance factor although one of the two label-
ers identified it as delighter. Most classifiers also classified it as delighter. The
reviewer is very happy about the app (high satisfaction) and favors it over other
apps mainly due to easier-to-use features and cheaper price, which are classical
performance factors. However, the high level of excitement may also indicate
that these feature are real delighters, which the reviewer has never experienced
in other apps. Here is another example:
“Can you please update this with the map of Bhutan & Nepal.. I am going to
drive to bhutan this October but I can’t find any bhutan map which could be
useful to work in offline.. Please update us quickly..”

We labeled this review as delighter although one of the two labelers identified
it as performance factor. Some classifiers classified it as performance factor while
others even predicted it to be a basic feature. The reviewer is asking for an
urgently demanded but rare feature, which may indicate that this is really a
delighter for the reviewer. However, the review is also phrased in a way that
suggests some disappointment (“I can’t find”, “Please update us quickly..”).
Also, it is not clear from the review whether other maps are available offline
and, thus, adding specific regions creates proportionately more satisfaction (i.e.,
performance factor).

6.3 Threats to Validity

Here, we discuss potential threats to validity of our models and evaluation.

Construct Validity. The Kano model, as defined by Kano [17] consists of
five classes: delighter, performance, basic, irrelevant, and rejection features. In
this paper, we did not consider the rejection feature class, since they are fairly
rare and their definition is ambiguous. Still, there may be reviews that fall into
this class. Examples include features that are annoying to users, e.g., excessive
advertisement, but also features that users perceive as threat to their privacy,
e.g., app tracking or the “blue read-checkmark” in messenger apps.

Internal Validity. In our manual labeling process, we assigned each review
exactly one label. This, however, might be too coarse grained, as some reviews
contain more than one Kano factor, e.g., a user reports a problem with a basic
feature but also suggests ideas that are delighters. Reviews containing more than
one factor are problematic, as they can be classified ambiguously by the classifiers
and human annotators. There are two main approaches to solve this problem:
(1) Separation: We separate each aspect of a complex review as a distinct review.
This, however, may break contextual links between aspects. Also, the boundary
between them is often blurred. (2) Multilabel classification: When a review covers
multiple Kano factors, we can assign multiple labels accordingly. This introduces
a huge overhead and thus is only feasible when a significant number of reviews
include multiple different factors. Usually, this is not the case. In our labeling
process, we decided to assign labels according to the most prominent aspect of a

Automatically Classifying Kano Model Factors in App Reviews 259

review, e.g., if a user reports a bug that makes the app unusable and expresses
their dissatisfaction, but also reports a delighter, we assigned the basic label.

Despite our efforts to make the labeling process as transparent and systematic
as possible, there may still be some variability in the resulting gold standard,
e.g., misinterpretation of the users intention, blurred boundaries of the Kano
factors, too broad or too narrow judgement or human mistakes.

External Validity. Our results have shown that generalization of our tested
classifiers is fairly moderate when applied to unseen, dissimilar test data. This
may indicate that more data is needed to train a classifier that generalizes better.

Lastly, app reviews are not the only relevant source of user feedback.
Nayebi et al. [26] mined 70 apps for six weeks on app store reviews and on
Twitter. They found that Twitter provided 22.4% more feature requests and
12.9% more bug reports.

7 Conclusions

In this paper, we presented an automated approach to app review classifica-
tion according to the Kano model. We evaluated several BERT-based models
and found that, overall, BERT performed best with an accuracy of 92.8% to
95.7%. We compared our findings to two baseline approaches based on tradi-
tional machine learning techniques and found that most BERT-based classifier
outperform them by magnitudes, i.e., by around 30%. We evaluated the gener-
alization of our classifier to unseen app reviews and found that the performance
of all classifiers dropped significantly. We conclude that more data is needed to
achieve a classifier that performs well on unseen data. We also evaluated that
misclassification of the classifiers does, to some degree, correlate with ambiguity
in the manual labeling process, as accuracy differs by 33.8% between consistent
and inconsistent labeling. What is still missing in our work is an evaluation of
the approach in its context, i.e., in terms of a user study.

Acknowledgements. We want to thank the authors of the two datasets for permis-
sion to use parts of their dataset and the permission to publish our labeled dataset.
We also want to thank Murat Sancak for his initial work on the topic in his Bachelor’s
thesis.

References

1. Achimugu, P., Selamat, A., Ibrahim, R., Mahrin, M.N.: A systematic literature
review of software requirements prioritization research. Inf. Softw. Technol. 56(6),
568–585 (2014). https://doi.org/10.1016/j.infsof.2014.02.001

2. AlAmoudi, N., Baslyman, M., Ahmed, M.: Extracting attractive app aspects from
app reviews using clustering techniques based on kano model. In: IEEE Inter-
national Requirements Engineering Conference Workshops (REW). IEEE (2022).
https://doi.org/10.1109/REW56159.2022.00030

https://doi.org/10.1016/j.infsof.2014.02.001
https://doi.org/10.1109/REW56159.2022.00030

260 M. Binder et al.

3. Brunotte, W.: App Store Rev. (2022). https://doi.org/10.5281/zenodo.7319510
4. Bukhsh, F.A., Bukhsh, Z.A., Daneva, M.: A systematic literature review on require-

ment prioritization techniques and their empirical evaluation. Comput. Standards
Interfaces 69, 103389 (2020). https://doi.org/10.1016/j.csi.2019.103389

5. Chung, H.W., Févry, T., Tsai, H., Johnson, M., Ruder, S.: Rethinking embed-
ding coupling in pre-trained language models. In: 9th International Conference on
Learning Representations (ICLR). OpenReview.net (2021)

6. Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: Natural language processing
for requirements engineering: The best is yet to come. IEEE Softw. 35(5), 115–119
(2018). https://doi.org/10.1109/ms.2018.3571242

7. Dell’Anna, D., Aydemir, F.B., Dalpiaz, F.: Evaluating classifiers in SE research:
the ECSER pipeline and two replication studies. Empirical Softw. Eng. 28(1),
(2022). https://doi.org/10.1007/s10664-022-10243-1

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/
10.18653/v1/N19-1423

9. Fischbach, J., et al.: Automatic creation of acceptance tests by extracting con-
ditionals from requirements: NLP approach and case study. J. Syst. Softw. 197,
11159 (2023). https://doi.org/10.1016/j.jss.2022.111549

10. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and
challenges. IEEE Softw. 34(2), 44–52 (2017). https://doi.org/10.1109/ms.2017.33

11. Guzman, E., Maalej, W.: How do users like this feature? a fine grained sentiment
analysis of app reviews. In: IEEE 22nd International Requirements Engineering
Conference (RE) (2014). https://doi.org/10.1109/re.2014.6912257

12. Henao, P.R., Fischbach, J., Spies, D., Frattini, J., Vogelsang, A.: Transfer learning
for mining feature requests and bug reports from tweets and app store reviews.
In: IEEE International Requirements Engineering Conference Workshops (REW).
IEEE (2021). https://doi.org/10.1109/rew53955.2021.00019

13. Herrmann, A., Daneva, M.: Requirements prioritization based on benefit and cost
prediction: An agenda for future research. In: IEEE International Requirements
Engineering Conference (RE) (2008). https://doi.org/10.1109/re.2008.48

14. Herzberg, F., Mausner, B., Snyderman, B.: The motivation to work. Transaction
Pub (1993)

15. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: NoRBERT: Transfer learning for
requirements classification. In: IEEE International Requirements Engineering Con-
ference (RE) (2020). https://doi.org/10.1109/re48521.2020.00028

16. Hujainah, F., Bakar, R.B.A., Abdulgabber, M.A., Zamli, K.Z.: Software require-
ments prioritisation: a systematic literature review on significance, stakeholders,
techniques and challenges. IEEE Access 6, 71497–71523 (2018). https://doi.org/
10.1109/access.2018.2881755

17. Kano, N., Seraku, N., Takahashi, F., Tsuji, S.: Attractive quality and must-be
quality. J. Japanese Society Qual. Contr. 14(2), 147–156 (1984)

18. Lan, Z., et al.: A lite bert for self-supervised learning of language representations
(2019)

19. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33(1), 159–174 (1977). https://doi.org/10.2307/2529310

https://doi.org/10.5281/zenodo.7319510
https://doi.org/10.1016/j.csi.2019.103389
https://doi.org/10.1109/ms.2018.3571242
https://doi.org/10.1007/s10664-022-10243-1
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.jss.2022.111549
https://doi.org/10.1109/ms.2017.33
https://doi.org/10.1109/re.2014.6912257
https://doi.org/10.1109/rew53955.2021.00019
https://doi.org/10.1109/re.2008.48
https://doi.org/10.1109/re48521.2020.00028
https://doi.org/10.1109/access.2018.2881755
https://doi.org/10.1109/access.2018.2881755
https://doi.org/10.2307/2529310

Automatically Classifying Kano Model Factors in App Reviews 261

20. Lee, H., Cha, M.S., Kim, T.: Text mining-based mapping for kano quality factor.
ICIC Express Letters. Part B, Applications: an International J. Res. Surv. 12(2),
185–191 (2021)

21. Lim, S., Henriksson, A., Zdravkovic, J.: Data-driven requirements elicitation: a
systematic literature review. SN Comput. Sci. 2, 16 (2021)

22. Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach. ArXiv
abs/1907.11692 (2019)

23. Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic classification of
app reviews. Requirements Eng. 21(3), 311–331 (2016). https://doi.org/10.1007/
s00766-016-0251-9

24. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? on automati-
cally classifying app reviews. In: IEEE 23rd International Requirements Engineer-
ing Conference (RE) (2015). https://doi.org/10.1109/re.2015.7320414

25. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33(1), 48–54 (2016). https://doi.org/10.1109/ms.2015.
153

26. Nayebi, M., Cho, H., Farrahi, H., Ruhe, G.: App store mining is not enough. In:
IEEE/ACM International Conference on Software Engineering Companion (ICSE-
C) (2017). https://doi.org/10.1109/icse-c.2017.77

27. Pagano, D., Maalej, W.: User feedback in the appstore: An empirical study. In:
IEEE International Requirements Engineering Conference (RE) (2013). https://
doi.org/10.1109/re.2013.6636712

28. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

29. Sainani, A., Anish, P.R., Joshi, V., Ghaisas, S.: Extracting and classifying require-
ments from software engineering contracts. In: IEEE International Requirements
Engineering Conference (RE). IEEE (2020). https://doi.org/10.1109/re48521.
2020.00026

30. Stanik, C., Haering, M., Maalej, W.: Classifying multilingual user feedback using
traditional machine learning and deep learning. In: IEEE International Require-
ments Engineering Conference Workshops (REW), pp. 220–226 (2019). https://
doi.org/10.1109/REW.2019.00046

31. Wang, C., Daneva, M., van Sinderen, M., Liang, P.: A systematic mapping study
on crowdsourced requirements engineering using user feedback. J. Softw.: Evol.
Process 31(10), e2199 (2019). https://doi.org/10.1002/smr.2199

32. Winkler, J., Vogelsang, A.: Automatic classification of requirements based on con-
volutional neural networks. In: IEEE International Requirements Engineering Con-
ference Workshops (REW) (2016). https://doi.org/10.1109/rew.2016.021

33. Winkler, J.P., Vogelsang, A.: Using tools to assist identification of non-
requirements in requirements specifications – a controlled experiment. In: Require-
ments Engineering: Foundation for Software Quality (REFSQ), pp. 57–71. Springer
International Publishing (2018). https://doi.org/10.1007/978-3-319-77243-1 4

34. Wouters, J., Menkveld, A., Brinkkemper, S., Dalpiaz, F.: Crowdbased requirements
elicitation via pull feedback: method and case studies. In: Requirements Engineering.
Requirements Engineering (2022). https://doi.org/10.1007/s00766-022-00384-6

https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1109/re.2015.7320414
https://doi.org/10.1109/ms.2015.153
https://doi.org/10.1109/ms.2015.153
https://doi.org/10.1109/icse-c.2017.77
https://doi.org/10.1109/re.2013.6636712
https://doi.org/10.1109/re.2013.6636712
https://doi.org/10.1109/re48521.2020.00026
https://doi.org/10.1109/re48521.2020.00026
https://doi.org/10.1109/REW.2019.00046
https://doi.org/10.1109/REW.2019.00046
https://doi.org/10.1002/smr.2199
https://doi.org/10.1109/rew.2016.021
https://doi.org/10.1007/978-3-319-77243-1_4
https://doi.org/10.1007/s00766-022-00384-6

Data-Driven Persona Creation,
Validation, and Evolution

Nitish Patkar(B) and Norbert Seyff

University of Applied Sciences and Arts Northwestern Switzerland,
Windisch, Switzerland

{nitish.patkar,norbert.seyff}@fhnw.ch

Abstract. [Context and motivation] Personas are a well-known
technique to represent a particular user type and stimulate software
development. [Question/problem] Personas are often based on find-
ings from ethnographic studies, and their creation can be time and effort
intensive. Furthermore, validating the correctness of the Personas is an
open issue. [Principal ideas/results] We advocate a data-driven app-
roach that relies on analyzing various kinds of user data, in particular,
user feedback and monitoring data, to create, validate, and evolve Per-
sonas. [Contributions] In this research preview paper, we discuss the
problem we want to address with our research, formulate research ques-
tions, describe the initial technical solution, and present our planned
contributions through a fictional usage scenario. Furthermore, we pro-
vide initial research results from an ongoing interview study that analyzes
the use of Personas in practice.

Keywords: Personas · Data-driven requirements engineering
(DDRE) · User-centered design · Stakeholder analysis

1 Introduction

A Persona is a fictional representation of a user group’s common behavior, goals,
and motivations, compiled into a single individual [2,4]. Personas can greatly
aid the software development process by providing insight into user behavior,
goals, and motivations. For instance, user experience (UX) designers can use
this information to design user interfaces that better support users in achieving
their goals. When done correctly, this can lead to the development of software
that is more easily accepted and provide greater value to users.

Traditionally, qualitative methods, for instance, ethnographic studies, have
been used to collect relevant information about potential users [9]. Typically, this
data collection occurs at the beginning of the development process. Since ethno-
graphic methods are often the primary source of information gathering, the task
of creating Personas can be time and resource-intensive. To address this issue,
the automated creation of Personas using data science methods and tools to gain
insights into large user data has emerged under the umbrella term “Data-Driven
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 262–271, 2023.
https://doi.org/10.1007/978-3-031-29786-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_18&domain=pdf
http://orcid.org/0000-0001-8084-4980
http://orcid.org/0000-0002-0138-892X
https://doi.org/10.1007/978-3-031-29786-1_18

Data-Driven Persona Creation, Validation, and Evolution 263

Persona Development (DDPD)”. Salminen et al. provide an extensive overview
of existing research in DDPD [7]. For instance, recent studies have used data
originating from analytics platforms (e.g., clickstreams), social media platforms,
as well as data from app stores, such as age, gender, mobile device version, and
operating system, to create Personas [3,6,13]. Methods, such as K-means clus-
tering and non-negative matrix factorization, are typically used to analyze data
and create Personas [7]. In our opinion, the suggested DDPD approaches are
still maturing, which is evident from the fact that they are not widely used in
practice yet. As correctly noted by Salminen et al. existing research in DDPD
assumes that there is sufficient data available for algorithmic analysis to create
Personas. This implies that software is already in place and in use. By placing a
strong emphasis on the creation of Personas, DDPD does not embrace today’s
software life cycle in full. We argue that the continuous validation and evolution
of Personas need to be considered as well. One aim of our ongoing research is to
bridge this gap.

Another motivating factor for our research is our observation that the cur-
rent adoption of Personas in practice suffers from various issues. This observa-
tion is also supported by the literature. For instance, in a 2014 industry survey,
Billestrup et al. reported the obstacles of using Personas during software devel-
opment [1]. Among other things, they found that knowledge about Personas
varies between companies and different roles within companies. They also found
that companies often allocate “zero” resources to Persona development. This
can result in superficial Personas that are unfit to be used for development. Fur-
thermore, even when meaningful Personas are created, there is limited empirical
evidence on their use, particularly when software maintenance and evolution
take place. Little is known about whether and how Personas change and evolve
in this time.

The main goal of our ongoing research is to harness the power of data-driven
requirements engineering (DDRE) to automate Persona creation, validation,
and evolution as a continuous process.

The overall expected contributions of the planned work are (1) empirical
evidence on the use of Personas in practice, (2) a novel data-driven approach
including the development of methods, algorithms, and research prototypes, for
creating, validating, and evolving Personas, and (3) an evaluation of the proposed
solution.

To accomplish our goal, we have identified several research questions and
potential research contributions in Sect. 2. In Sect. 3, we sketch the design and
development of our envisioned solution and discuss anticipated challenges. We
present a fictitious usage example in Sect. 4 to show how Personas could be
created, validated, and evolved automatically with our solution. In Sect. 5, we
discuss early results from an interview study to better understand the use of
Personas in practice. Finally, in Sect. 6, we summarize our main contributions.

264 N. Patkar and N. Seyff

2 Research Road Map

Based on our goal to automate continuous Persona creation, validation, and
evolution, we defined a road map including key research questions (RQs) and
potential research contributions (RCs).

RQ1: How are Personas created, validated, and evolved in software develop-
ment projects?

With our work on RQ1, we foresee the following RC.

RC 1.1 Empirical evidence on Persona usage in software projects. To gain a
deeper understanding of the use of Personas, as well as practitioners’ perspec-
tives and expert insights on data-driven Persona creation, validation, and evo-
lution, we are using a grounded theory approach [10]. As a first step, we are
conducting expert interviews. A large-scale practitioner survey will follow the
interviews to validate and generalize the findings. In Sect. 5, we present initial
findings related to RC 1.1.

RQ2: How to provide automated support for continuous Persona creation,
validation, and evolution?

Based on the results of RQ1 and utilizing existing work in DDRE, we anticipate
three potential RCs. In the first phase of our planned research, our focus will
be on validation (RC 2.1), evolution (RC 2.2), and the creation of Personas for
existing software (RC 2.3). It is important to note that our proposed approach
would not eliminate the need for human involvement. However, we foresee that
our automated solution supports its users, e.g., requirements engineers, with the
necessary information to make informed decisions about Personas.

RC 2.1 Validation of Personas. We define Persona validation as the process of
verifying the accuracy of existing Personas based on data gathered during system
operation. This involves verifying the accuracy of the values for specific Persona
attributes (e.g., age and personality traits) against the available data. Regu-
larly conducting validation activities can ensure that the Persona(s) continue to
accurately represent the target users and that software meets their needs.

Salminen et al. conclude in their SLR that research on Persona validation
tends to be mostly manual and informal [7]. For example, qualitative methods,
such as open discussion groups or interviews, are often used to validate auto-
matically generated Personas.

As a first step in our research, we are planning to automate Persona validation
by leveraging existing research in DDRE. Applying design science, we plan to
build a tool-supported method for Persona validation [11]. More specifically,
our implementation would allow the requirements engineer to explore values
for various Persona attributes. This allows for the comparison with existing
values. In Sect. 3, we provide more details about the planned technical solution.

Data-Driven Persona Creation, Validation, and Evolution 265

We also plan to evaluate this first solution in different case studies. In particular,
we aim at evaluating the applicability, effectiveness, and usability of the proposed
solution.

RC 2.2 Evolution of Personas. We define Persona evolution as the process of
adapting the existing Persona(s) based on data gathered during system opera-
tion. This, for example, means adding new values to the existing attributes of a
Persona as well as changing attributes over time.

Based on our literature review and the analysis by Salminen et al., there is
no existing research on automated, data-driven Persona evolution [7].

Adding a Persona evolution functionality to the developed solution will be
the second step in our planned research. Following design science, we will fur-
ther advance our technical solution to allow for the updating and refining of
existing Personas. This includes keeping track of existing Personas and their
historical evolution using versioning. The evolution functionality will assist the
requirements engineer in accurately representing the current target user groups.
Similar to Persona validation, we plan to analyze the effects of automated Per-
sona evolution through case studies.

RC 2.3 Creation of Personas. We define Persona creation as the process of auto-
matically generating values for key Persona attributes based on data gathered
from relevant sources. This involves analyzing the data to reveal patterns and
characteristics of the emerging user groups to provide insights for requirements
engineers.

As stated earlier in the introduction, the field of data-driven Persona creation
has a vast body of research available. Currently, research either requires manual
data collection methods, such as ethnographic studies or assumes that a system
or part of a system is already in place to gather data for automatically generating
Personas.

In the third step of our research, we plan to create Personas automatically
for existing software as well. However, we will be relying on data from DDRE,
including user feedback and monitoring data, to achieve this goal. If needed,
a new Persona will be created when validation shows a mismatch between the
current Persona(s) and actual users.

In the fourth step, however, we would like to go beyond the limitations of
current approaches and create Personas for software that do not yet exist. In
particular, we foresee creating Personas based on data from similar applications.
We are confident that methods and tools within DDRE, in particular regard-
ing the analysis of user feedback and reviews from marketplaces, provide the
potential to support the development of such a solution.

3 The Persona Engine – A Solution Idea

In this section, we present our plan for the development of the “Persona Engine”,
a proposed technical research prototype. It will be built upon the “FAME” frame-
work, which allows for simultaneous collection and processing of user feedback

266 N. Patkar and N. Seyff

and monitoring data [5]. The FAME architecture already includes components
for data acquisition, storage, and combination. Our goal is to extend FAME to
support Persona validation (RC 2.1, Step 1), evolution (RC 2.2, Step 2), and
the identification and creation of Personas for existing software (RC 2.3, Step
3). Currently, we are not planning to address the creation of Personas for soft-
ware that does not yet exist (RC 2.3, Step 4), which calls for a new, even more,
innovative technical solution. Our plan is to enhance and augment FAME by
incorporating the following key capabilities.

3.1 Extending the Data Storage and Combination Component

FAME processes user feedback and monitoring data based on an underlying
ontology. Our goal is to enhance this ontology to incorporate common Persona
attributes as defined by Salminen et al. [8], without limiting ourselves to a specific
template. Additionally, we plan to extend FAME’s Combiner component for
calculating Persona attribute values, which may require expanding FAME’s data
analysis capabilities. However, its current abilities already allow for generating
values for common Persona attributes.

– Simple attributes, such as “age”, “gender”, and “location” can be directly
based on data from user profiles.

– For attributes, such as “personality and character traits”, a more sophisti-
cated data analysis is necessary. Sentiment analysis of user feedback, which
is already available in FAME, for instance, can assist in understanding users’
level of criticism. Furthermore, the number of critical feedback can help to
finally determine whether the users of a software system deserve to be called
critical.

– Other attributes, such as “experience with the product” or “product-related
behavior” can be generated based on monitoring data. Based on this data,
we know which features are used by users, how often, and for how long they
work with software.

– We also have identified Persona attributes where we currently do not see
the possibility of generating values with the help of FAME. This includes
attributes, such as “lifestyle”.

3.2 Adding a “Persona Explorer and Visualizer” Component

We intend to add a Data Explorer and Visualizer component to FAME to enable
the requirements engineer and other project members to explore information
regarding Personas in an intuitive and easily understandable manner. This new
component has the potential to include several features, but further discussions
with practitioners are needed to determine their specific needs. Based on the
generated data, this component could provide visual aids, such as charts, graphs,
and tables, to give an overview of users, attribute values, and trends. It could
also allow for data filtering based on criteria, such as geographical location or
demographics, for more targeted analysis.

Data-Driven Persona Creation, Validation, and Evolution 267

A more advanced feature could be recommendations based on rules, where
the system not only allows for data exploration but also recommends values for
Persona attributes. For example, a rule could dictate that if over 60% of users fall
within a particular age range, the average of that range should be proposed as
the value for the Persona’s age attribute. Similar rules can be created for other
attributes, such as “gender”, and “location”. The Data Visualizer component
could also include a user-friendly dashboard, allowing the requirements engineer
to view the most critical and actionable data at a glance, facilitating decision-
making.

The Persona Explorer and Visualizer Component will keep the requirements
engineer in charge of decision-making. However, it is important to note that the
final decisions regarding Persona creation, validation, and evolution may not
solely be based on the data available in our solution. We acknowledge that other
factors, such as business, political, or social considerations, can influence these
decisions.

3.3 Anticipated Challenges

The implementation of the technical solution presents several challenges, includ-
ing the need for clear rules for processing data of varying types and sources, and
for determining values for the various Persona attributes. This involves complex
tasks like pattern recognition in data, assigning appropriate weights to different
data sources, and evaluating the accuracy of existing Personas in representing
the target user group through comparison with new data. Moreover, present-
ing the results in a manner that is both comprehensive and actionable, while
being easily understandable by the requirements engineer, is another significant
challenge.

Another concern that must be addressed is data privacy. Gathering data from
users and later (RC 2.3, Step 4) from other platforms (e.g., marketplaces) may
raise privacy concerns, which must be addressed responsibly.

Finally, it is important to fully understand the needs of the different stake-
holders, including requirements engineers and UX designers. To gain a deeper
understanding of their needs and concerns, an interview study has been initiated,
providing us with valuable insights into their requirements.

4 Our Solution at Work – A Fictional Use Case

In this section, we describe a couple of scenarios to show how Personas – once our
contributions are in place – could be used in the future. Imagine that a startup
wants to venture into the sustainable energy business and decides to build a green
energy trading platform as a web application. They hire a team of requirements
engineers, UX experts, and developers. They start the market research, which is a
manual step, wherein they find three related platforms offered as Android mobile
apps. They have heard that automated means for Persona creation, validation,
and evolution are available and decide to use them. With the help of the solution,

268 N. Patkar and N. Seyff

they start analyzing user comments for those platforms on Google Play. The new
Persona Engine, which automatically parses user comments, finds the authors
of the comments even on other platforms, scraps publicly available information
about those users, aggregates reviews and demographic data and provides results
to the requirements engineers on a dashboard to support Persona creation (RC
2.3, Step 4). One of the Personas they identify is a woman in her early thirties
who prefers to live a sustainable lifestyle.

Based on the requirements and Personas, UX experts design user interfaces,
and the green energy trading platform is developed including built-in feedback
mechanisms. Finally, the green energy trading platform is deployed, and several
hundred users have registered and are actively using it. The requirements engi-
neers want to see whether the initially envisioned Personas are valid (RC 2.1,
Step 1). They use the Persona Engine which, based on the available user feed-
back and monitoring data, allows them to explore and visualize relevant data.
Luckily, the data confirm that the attribute values are correct. For example, the
data reveals that most of the users are in their thirties.

User feedback and monitoring data are constantly stored and accessible by
the Persona Engine for Persona evolution (RC 2.2, Step 2). About a year after the
deployment of the app, the dashboard shows that the Persona evolution mech-
anism has detected another dominant user group– elderly people. The company
is surprised to see these people as users. Looking at the data in more detail,
they can also see that this group is struggling with the usability of the app, in
particular the energy trading feature. As the company sees potential in support-
ing this new user group, they create another Persona for elderly people using
values for several attributes proposed by Persona Engine (RC 2.3, Step 3). The
new Persona is then shared with the development team, together with the feed-
back of this user group. These insights encourage them to redesign certain user
interfaces.

5 Preliminary Results of the Interview Study

We are conducting interviews with experts in requirements engineering and UX
design to gather insights on the software development process for Persona cre-
ation, validation, and evolution. The aim is to validate the practical relevance of
our proposed idea from the practitioners’ perspective. We aim to identify which
aspects of Persona development (e.g., validation, evolution) are most important
to them. So far, we interviewed a total of 3 experts who mainly act as project
managers in projects where industry partners and research departments work
together. We have selected these experts as they all have several years of expe-
rience and a strong background in requirements engineering and in applying
user-centered methods. However, as they are working for the same university as
the authors, the sampling strategy used so far can be described as convenience
sampling. The interview instrument consists of a total of eight questions spread
across three sections. The instrument and transcripts of the interviews are pro-

Data-Driven Persona Creation, Validation, and Evolution 269

vided as additional material.1 Although the study is still ongoing, we are able
to present the first interesting insights.

5.1 Results

To create Personas (i.e., question 2.3), the participants mostly used ethnographic
methods, such as interviews. Furthermore, their Personas were also created based
on assumptions and through brainstorming with other stakeholders. All partici-
pants stated that projects wherein they created Personas followed agile develop-
ment practices and Personas were created at the beginning of a project. Reflect-
ing on potential improvements to the current Persona creation process, one of
the participants even mentioned that he would see value in working more with
the actual usage data and using tools, such as Google Analytics, but with current
approaches, it might be a lot of work.

When asked about the validation of Personas (i.e., question 2.4), all of them
mentioned that Personas were never validated once created. The reason, one of
them mentioned, was that there is no specific demand for it from the business
side, often due to the limited budget. Two of them mentioned usability test-
ing as some form of validation. One participant argued that involving actual
target users is a way to check whether the solution behaves according to user
needs as long as these users match the created Persona. Nevertheless, all of them
mentioned that validating a Persona makes sense. For example, one of the par-
ticipants said that she “... would validate a Persona to strengthen or deepen
them, or to widen the view on them ...”.

The discussion regarding Persona evolution (i.e., question 2.7), revealed that
none of them “updated” or “changed” (i.e., evolved) the Personas during imple-
mentation, maintenance, or evolution. As such, it did not occur to them to
evolve the Personas. However, when we explained our idea of automation in
more detail, two of them mentioned that their mental model of the users was
evolving, although they did not update the Personas. Nevertheless, all of them
were positive about the idea of Persona evolution if data were available.

When asked whether Personas were used during the development phase and
the maintenance and evolution phase (i.e., questions 2.5 and 2.6), all of them
said that they were used to create UI prototypes only. Developers did not refer
to Personas during implementation. They were all uncertain about how Personas
were used in the maintenance and evolution of these systems, as they were not
involved in it. One of the reasons mentioned for the poor application of the Per-
sonas was the lack of resources (e.g., budget). One of the participants reasoned
that, often, there is high time pressure to deliver a product, which compromises
the use of Personas. Another participant mentioned that having a UX expert in
a team can help educate developers and other stakeholders about the applica-
bility of Personas during implementation and maintenance. Nevertheless, all of

1 https://figshare.com/articles/online resource/Data-driven Persona Creation
Validation and Evolution/21552111.

https://figshare.com/articles/online_resource/Data-driven_Persona_Creation_Validation_and_Evolution/21552111
https://figshare.com/articles/online_resource/Data-driven_Persona_Creation_Validation_and_Evolution/21552111

270 N. Patkar and N. Seyff

them wished that Personas were used more intensively during development and
saw value in using them in the software’s maintenance and evolution phase.

Finally, reflecting on our idea (i.e., question 3.1), all of them said that it is
meaningful to automate the Persona creation, validation, and evolution process.
One of the participants while reflecting on the idea said that it seems meaning-
ful to validate the Personas because user behavior keeps changing on existing
software, as well as new users are attracted to software all the time. Further,
he compared the idea of Persona evolution to a growing child, “Like a child is
growing and getting older or more experienced– Personas evolve similarly, and
if you can automate this process over the lifetime of software might definitely
be interesting.” One of the participants was rather critical and warned us of the
risk of “... overfitting the Personas when more data about the potential users is
available.” Finally, the participants also added their own ideas. For example, one
of them mentioned that she would like to visualize the entire customer journey
through the use of various Personas.

5.2 Threats to Validity

The ongoing interview study and its outcomes are susceptible to several threats
to validity as described by Wohlin et al. [12]. Construct validity : The variables in
this research are measured through interviews, including open-ended questions
where participants are asked to express their own opinions. To avoid imposing
one’s own meaning instead of accurately capturing the viewpoint of the individ-
uals studied, open-ended questions are used to allow participants to elaborate on
their answers. Conclusion validity : To mitigate incorrect conclusions, each inter-
view was conducted in one session to ensure that answers were not influenced
by internal discussions. A pilot study was also conducted to obtain highly reli-
able measures and avoid poor question-wording. Internal validity : In this study,
all experts interviewed work for the same university as the authors, potentially
introducing bias in the sample selection. To address this, for further interviews,
the authors aim to interview practitioners from outside their university. The
risk of information loss during the interview is mitigated by audio recording the
interviews and using a mobile app to automatically create transcripts. External
validity : To increase external validity, the observations shared by the intervie-
wees will be validated with the rest of the sample to make the outcomes more
generalizable.

6 Conclusion

In this research preview paper, we present the idea of automating the creation,
validation, and evolution of Personas. We discuss corresponding research ques-
tions, potential research contributions, the envisioned solution, and a fictional
usage scenario. The main contribution of our work is the presentation and dis-
cussion of initial results from an ongoing expert interview study. Our findings
indicate that, in practice, Persona validation and evolution are not yet typically

Data-Driven Persona Creation, Validation, and Evolution 271

part of the development workflow. However, feedback from practitioners was
positive and indicates that our ideas on providing automated support for the
creation, validation, and evolution of Personas are welcome.

References

1. Billestrup, J., Stage, J., Nielsen, L., Hansen, K.S.: Persona usage in software devel-
opment: advantages and obstacles. In: The Seventh International Conference on
Advances in Computer-Human Interactions, ACHI, pp. 359–364. Citeseer (2014)

2. Cooper, A.: The inmates are running the asylum. In: Software-Ergonomie’99, p.
17. Springer (1999)

3. Jung, S.G., Salminen, J., Jansen, B.J.: Giving faces to data: Creating data-driven
personas from personified big data. In: Proceedings of the 25th International Con-
ference on Intelligent User Interfaces Companion, pp. 132–133 (2020)

4. Miaskiewicz, T., Kozar, K.A.: Personas and user-centered design: How can personas
benefit product design processes? Des. Stud. 32(5), 417–430 (2011)

5. Oriol, M., et al.: Fame: supporting continuous requirements elicitation by combin-
ing user feedback and monitoring. In: 2018 IEEE 26th International Requirements
Engineering Conference (re), pp. 217–227. IEEE (2018)

6. Park, D., Kang, J.: Constructing data-driven personas through an analysis of
mobile application store data. Appl. Sci. 12(6), 2869 (2022)

7. Salminen, J., Guan, K., Jung, S.G., Jansen, B.J.: A survey of 15 years of data-
driven persona development. Int. J. Human-Comput. Interact. 37(18), 1685–1708
(2021)

8. Salminen, J., Guan, K., Nielsen, L., Jung, S.g., Jansen, B.J.: A template for data-
driven personas: analyzing 31 quantitatively oriented persona profiles. In: Human
Interface and the Management of Information. Designing Information: Thematic
Area, HIMI 2020, Held as Part of the 22nd International Conference, HCII 2020,
Copenhagen, Denmark, July 19–24, 2020, Proceedings, Part I 22. pp. 125–144.
Springer (2020)

9. Tu, N., et al.: Combine qualitative and quantitative methods to create persona.
In: 2010 3rd International Conference on Information Management, Innovation
Management and Industrial Engineering. vol. 3, pp. 597–603. IEEE (2010)

10. Walker, D., Myrick, F.: Grounded theory: an exploration of process and procedure.
Qual. Health Res. 16(4), 547–559 (2006)

11. Wieringa, R., Heerkens, H.: Design science, engineering science and requirements
engineering. In: 2008 16th IEEE International Requirements Engineering Confer-
ence, pp. 310–313. IEEE (2008)

12. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering. Springer Science & Business Media (2012)

13. Zhang, X., Brown, H.F., Shankar, A.: Data-driven personas: Constructing archety-
pal users with clickstreams and user telemetry. In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, pp. 5350–5359 (2016)

Towards a Cross-Country Analysis
of Software-Related Tweets

Saliha Tabbassum, Ricarda Anna-Lena Fischer, and Emitza Guzman(B)

Vrije Universiteit Amsterdam, De Boelelaan 1111, 1081, HV Amsterdam, Netherlands
s.tabbassum@student.vu.nl, {r.a.l.fischer,e.guzmanortega}@vu.nl

https://s2group.cs.vu.nl

Abstract. [Context and motivation] Twitter is one of the most
widely used micro-blogging platforms. Globally distributed developers
and software companies use Twitter to communicate about software
updates, bugs and other type of information related to the software.
End-users from diverse geographical regions also use Twitter to give feed-
back about the software they use. Previous research has shown that this
feedback is valuable for requirements engineering, containing informa-
tion such as feature requests and usage scenarios. However, the effect
of the country of origin on software-related tweets has not been stud-
ied so far. [Question] In this paper, we investigate to what extent
people from various countries provide distinct feedback regarding cer-
tain characteristics on Twitter. [Principal ideas/results] We collected
70,759 tweets (Original: 17,940, Replies: 52,819) from popular Twitter
support accounts of ten software applications for two months. In the
subsequent analysis, we selected the tweets originating from the eight
most popular countries and analyzed a sample of 1,813 tweets with the
help of automatic and manual content analysis. Results show that out of
three characteristics (content, sentiment and text length); content, and
sentiment differ significantly at the country level in some cases. These
characteristics are used in algorithms automatically processing user feed-
back. Such algorithms are commonly used for requirements engineering
tasks. [Contributions] Our findings show the importance of considering
software-related user feedback on Twitter from a diverse audience during
the design, testing, and validation of feedback processing algorithms to
minimize bias concerning different countries of origin.

Keywords: User Feedback · Twitter · Diversity · Countries · Software
Evolution · Algorithm Bias

1 Introduction

Due to its ability to feature recent trends and real-time data, microblogging
has become a popular method for spreading information. Twitter is the most
popular micro-blogging platform among users [18]. More than 500 million tweets
are generated by active users daily on Twitter1.
1 https://www.internetlivestats.com/twitter-statistics/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 272–282, 2023.
https://doi.org/10.1007/978-3-031-29786-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_19&domain=pdf
https://www.internetlivestats.com/twitter-statistics/
https://doi.org/10.1007/978-3-031-29786-1_19

Towards a Cross-Country Analysis of Software-Related Tweets 273

Previous studies [6,13] show that tweets contain valuable software-related
information such as bug reports, feature requests and usage scenarios. This user
feedback is crucial for eliciting requirements, improving existing applications,
and developing future products that are less prone to errors and that address
user needs. Software-related user feedback can be submitted by a globally dis-
tributed audience on Twitter. Previous studies e.g., [1] on requirements elicita-
tion for software engineering have shown cultural differences among both users
and developers either in terms of requirements prioritization for provided ser-
vices, bug perception, and feature preference. Despite the potential impact of
users’ country of origin, the majority of approaches for automatically detecting,
classifying, summarizing and prioritizing requirements from this user feedback
e.g., [2,11,15,21] have not considered a diverse set of country distribution in
the data collected for the training and evaluation of their approaches. Ignoring
country-related differences in user feedback on Twitter and using tweets from a
limited set of countries could introduce algorithm bias—and therefore bias in the
requirements engineering process— when using tweets for designing, validating
and testing user feedback algorithms. Not taking some countries into account
when processing user feedback, could lead to users from these countries limiting
or stopping the app usage because their interests and needs are not considered
by the software companies. It is, therefore, necessary for app developers and
researchers to consider the importance of international diverse user feedback.

When specifically looking at tweets, to our best knowledge, there exists no
research that has analyzed country-related differences in tweets giving user feed-
back about software applications. The goal of this work is to narrow this gap
and understand to what extent people from varying countries provide distinct
software-related feedback on Twitter regarding characteristics such as content,
sentiment, and text length. These characteristics are often used as input in algo-
rithms automatically processing user feedback e.g., [2,11,15,21]. If the data used
to create the algorithm is not diverse, this can lead to algorithmic bias.

In this study, we collected 70,759 tweets from Twitter support accounts.
Then, we manually annotated and analyzed a representative sample of 1,813
tweets originating in the eight countries that had the most tweets in our original
collection. To encourage replication, we make our collected and annotated data,
analysis scripts and annotation guide available2.

This work is the first to study country differences and similarities of tweets
directed to software support accounts and present empirical evidence that such
tweets contain a considerable amount of user feedback that diverges among sev-
eral characteristics commonly used for the automatic processing of user feedback,
such as content, and sentiment.

2 Related Work

Research on software-related tweets from an end-users’ perspective appeared in
recent years. Studies have shown that non-technical users tend to give more
2 https://doi.org/10.6084/m9.figshare.18739577.

https://doi.org/10.6084/m9.figshare.18739577

274 S. Tabbassum et al.

feedback on social media platforms like Twitter compared to software forums
[3]. Prior work has shown that Twitter is an important source for software evo-
lution and crowd-based requirements engineering e.g., [3,6,13]. Our study helps
to understand more about the differences in user feedback on Twitter from
international non-technical users. Prior work has mined tweets from Twitter
support accounts of various applications to extract software-related information
e.g., [7,12]. A few studies have used multilingual tweets as the basis for develop-
ing models to classify or analyze user feedback e.g., [14,19]. Oehri and Guzman
[14] developed an approach for detecting semantically similar feedback among
different platforms (one of them being Twitter) and languages.

Regarding user feedback about software, there is some research done on
country-level differences in app store reviews [4,9]. Guzman et al. [9] analyzed
country and cultural differences in App Store reviews from eight countries and
found significant differences among some of the analyzed characteristics of the
reviews. Fischer et al. [4] analyzed national cultural differences in app store
reviews from eight countries written in five languages and found that some char-
acteristics differed among national cultures. Tizard et al. [20] surveyed end-
users and studied their reasons for (not) providing feedback. Although there are
already some studies in other domains on country-specific differences in tweets
and their characteristics, there is to our best knowledge, no study that addresses
country-specific differences in tweets directed to software support accounts that
are potentially helpful for requirements engineering and software evolution. With
our study we address this research gap.

3 Study Methodology

In this study, we investigate if user feedback on Twitter stemming from dif-
ferent countries differs according to various characteristics. Our main research
question is:

RQ: Does user feedback written by different countries vary?
In particular, we studied the following three user feedback characteristics of

tweets:

– Content: Used for classifying the tweets in the context of requirements engi-
neering and software evolution. It consists of five categories: bug report, sup-
port request, feature request, noise, and other.

– Sentiment: Affect present in the users’ tweets. It is based on a five-level
Likert scale ranging from very negative to very positive.

– Character Length: Refers to the total number of characters in a tweet’s
text after cleaning it (i.e., removing emojis, extra spaces, ampersands).

We considered the content, sentiment, and character length characteristics
since they are frequently considered for automatic prioritization and automatic
classification e.g., [7,11,16] of user feedback.

Towards a Cross-Country Analysis of Software-Related Tweets 275

Table 1. Dataset Overview per Country and App

Country Adobe Dropbox Evernote Google Maps LinkedIn Netflix Slack Snapchat Spotify YouTube Total

United States 1086 407 306 149 503 560 889 1314 1473 942 7,629

United Kingdom 287 97 85 66 168 555 165 379 554 184 2,540

India 51 23 19 81 167 195 53 61 209 430 1,289

Canada 156 42 30 22 55 101 105 83 184 80 858

Australia 45 26 14 10 24 37 79 30 53 42 360

Netherlands 15 13 6 4 16 16 31 8 30 19 158

Germany 34 7 10 6 14 21 51 10 28 26 207

France 25 11 6 2 12 7 36 28 21 11 159

Total 1,699 626 476 340 959 1,492 1,409 1,913 2,552 1,734 13,200

In the remainder of this section, we explain more in detail the data collection,
data sampling, automatic and manual content analysis process, as well as the
tests performed in the statistical analysis.

Data Collection. We crawled tweets from the Support Accounts of ten popular
software applications stemming from eight different countries, written in English.
For this process, we used Twitter’s Standard Search API3 as it was the only API
that provided free access to tweets at the time of research. We collected our data
between March 15, 2020, and May 3, 2020. We collected tweets directed to Twit-
ter support accounts rather than collecting general tweets mentioning popular
software as previous research [7] showed that these have a higher proportion of
tweets relevant to requirements engineering and software evolution. We chose
popular apps (with more than ten tweets on average per day on their Support
Account) stemming from different domains for our study.

In total, we collected 70,759 (Original: 17,940, Replies: 52,819) tweets over
the two month period4. This dataset also includes tweets from other countries
not included in our study, or users who did not specify their location.

We used Google Maps Geocoding API5 for fetching and saving the country
from the profile location attribute provided by Twitter account owners. Then, we
selected the eight countries with the most tweets to represent geographically dis-
tributed regions. These are, ordered by number of collected tweets, United States
of America, United Kingdom, India, Canada, Australia, Netherlands, Germany
and France. The tweets from the aforementioned selected countries total 13,200.
Table 1 shows the total number of tweets per app for the selected countries.

We selected English as the language of choice for this study because it is
a widely spoken language6, the most used language on Twitter [17] and both
annotators (see Section Manual Content Analysis) were fluent in it.

3 https://developer.twitter.com/en/docs/tweets/search/overview.
4 The term original tweet refers to the actual tweet of a user who posted something

on a Twitter Support Account, while a reply thread respond to that original tweet.
5 https://developers.google.com/maps/documentation/geocoding/start.
6 https://www.statista.com/statistics/266808/the-most-spoken-languages-

worldwide/.

https://developer.twitter.com/en/docs/tweets/search/overview
https://developers.google.com/maps/documentation/geocoding/start
https://www.statista.com/statistics/266808/the-most-spoken-languages-worldwide/
https://www.statista.com/statistics/266808/the-most-spoken-languages-worldwide/

276 S. Tabbassum et al.

Sample Creation. To create an appropriate sample for our manual analysis
and have statistically robust results, we chose a confidence interval of 95% with
a minimum sample size per country. For instance, the total tweets from the USA
were 7,629 and had a minimum sample size of 366 to ensure a confidence interval
of 95%. Furthermore, to equally represent the selected apps in the sample, we
took the proportional share of an app’s tweets in the respective country and
multiplied it by the minimum sample size.

The final sampled dataset consists of 1,813 tweets from eight countries and
ten applications.

Automatic Content Analysis. We automatically extracted the character
length of the tweets from the final sampled dataset. For the character length,
we cleaned the tweets’ text, and removed all the emojis, additional spaces, and
ampersands. We removed them because users sometimes overused these extra
characters without having a meaning for them and this would have skewed the
character length of individual tweets.

Manual Content Analysis. We manually annotated the sentiment and con-
tent. This decision was taken because the automatic classification of sentiment
and content on user feedback have not yet reached an accuracy that is compara-
ble to manual classification e.g., [11,16], and we did not want to introduce noise
to our results.

Annotation Process. Two authors of this study performed the manual anno-
tation. Each annotator labeled the content and sentiment of 1,813 tweets sep-
arately. To reduce major disagreements between the two annotators, we made
use of an annotation guide with definitions and examples for the sentiment levels
and content categories. For sentiment, the annotators could label between very
negative to very positive, including a neutral scale. The annotation guide speci-
fied certain key indicators to determine sentiment such as capitalized words (e.g.,
”FIRE ALL THE MONKEYS WORKING ON THIS APP” - very negative) or
superlatives (e.g., ”Best app ever!!!” - very positive). When mixed sentiments
were present (e.g., “I love the app, but absolutely hate the last release”)—which
happened rarely—annotators were instructed to label the sentiment they consid-
ered more predominant and which deserved more attention from a requirements
engineering and software evolution perspective (the sentiment about the last
release in the previous example).

Content categories, could be labelled into five categories (bug report, feature
request, support request, other, and noise), used in previous studies [4,9]. While
bug reports, feature requests, and support requests are important for require-
ments engineering and software evolution, the other category refers to topics not
relevant for requirements or software evolution, such as a product recommen-
dation or a general complaint. The noise category refers to tweets that are not

Towards a Cross-Country Analysis of Software-Related Tweets 277

written in English or contained illegible characters. During the annotation pro-
cess, annotators could indicate when they were unsure about their labelling; this
later helped solve disagreements (see Section Manual Disagreement Handling).

The Cohen’s Kappa for the final annotated set was 0.82, indicating a strong
agreement among annotators.

Manual Disagreement Handling. The disagreement of the final sampled
dataset was handled both manually and automatically. We used a script for the
automatic resolution of the disagreement among the two characteristics using
the following approach. For the sentiment, we used the average of the two sen-
timent (transformed numerical) scores and thus followed the same disagreement
resolving methodology of previous studies [4]. The main reason for this approach
was that most disagreements where in one scale unit, i.e., one annotator labelled
a tweet as “positive” and the other as “very positive”. Only two reviews out
of 1,813 tweets in the whole dataset where marked with more than one scale
difference. For the content, we used priority settings (bug report over feature
request over support request and other) to select the final annotation.

When one of the annotators was unsure about the labelling of a certain tweet
and had marked “unsure” in their labelling (see Section Annotation Process)
an additional manual inspection was conducted. In this step, both annotators
discussed their disagreement and reached a conclusion.

Hypothesis We tested three hypotheses in our study.

Hypothesis H1: The proportion of the content differs with statistical signifi-
cance across selected countries.

Hypothesis H2: The proportion of the sentiment score differs with statistical
significance across selected countries.

Hypothesis H3: The proportion of the character length differs with statistical
significance across selected countries.

Statistical Analysis We analyzed the final sampled dataset using descriptive
statistics suitable for each dependent variable. For the content, a categorical
dependent variable, we used the Chi-square test of independence to investigate
the statistical differences. To validate the results, we performed a posthoc pair-
wise Chi-square test with Bonferroni correction. For the ordinal variables senti-
ment and character length, we applied a Kruskal-Wallis test and a Tukey and
Kramer’s (Nemenyi) posthoc test with Tukey-Dist approximation for indepen-
dent samples. We consider the findings statistically significant if they have a
p-value below 0.05.

4 Results

Content 38% tweets of the tweets in the analyzed dataset are bug reports, 16%
feature requests, 27% support requests, and 19% other. The United Kingdom

278 S. Tabbassum et al.

has the highest number of tweets categorized as bug reports, with a proportion
of 45%. The Netherlands has the highest number of feature requests, with a
proportion of 22%. The number of support requests from India is the highest,
with a proportion of 42%. The lowest proportion of bug reports and feature
requests are from India (30% and 8% respectively). Figure 1 shows the proportion
of content for the analyzed countries.

The proportion of content among the analyzed tweets is statistically differ-
ent per selected country, χ2 (21, N=1811) = 92.585, p < 0.001. Thus, the
hypothesis H 1, that the content differs statistically significant can be
confirmed. The posthoc pairwise Chi-square test with Bonferroni correction
shows that there is a significant difference between India and every other coun-
try except France. The United Kingdom differs significantly from Canada and
the United States. The results of the posthoc tests reveal that the distribution
of the content is not independent across the countries. This indicates that user
feedback content differs significantly across different countries.

Fig. 1. Descriptive Results for Content, Sentiment and Number of Characters

Sentiment. Most of the tweets’ sentiments are positive, leading to a median
of 1 for the entire data analyzed. Tweets from each country also have a median
of 1, indicating a positive sentiment. Figure 1 shows an overview of the senti-
ment scores per country. The Kruskal-Wallis test results for the sentiment scores
indicate a statistically significant difference among the selected countries with
respect to the sentiment, χ2 (7, N=1811) = 49.291, p < 0.001. Thus, hypoth-
esis. H 2, that the proportion of sentiment score differs statistically
significant across the analyzed countries can be confirmed. The pair-
wise comparisons in the posthoc test revealed that Australia (mean sentiment:
0.118), the United Kingdom (mean sentiment: 0.176), and the United States

Towards a Cross-Country Analysis of Software-Related Tweets 279

(mean sentiment: -0.008) are significantly different from India (mean sentiment:
0.557) in terms of sentiment expression. This indicates that the sentiment of user
feedback differs across some countries.

Character Length. The tweet’s character length ranges between 6 and 279
with a median of 137 characters for all analyzed data. The box plot in Fig. 1
shows that the character length does not vary much across countries overall,
with medians across countries ranging from 120 to 152. The Kruskal-Wallis test
shows that the distribution of the character length differs in at least one of
the selected countries, χ2 (7, N=1811) = 14.896, p = 0.037. The result of the
posthoc test shows that no country pair differs significantly. Thus, hypothesis
H3 cannot be confirmed.

5 Discussion

This study analyzes software-related tweets from Twitter support accounts of ten
popular software applications, stemming from eight different countries. Its pur-
pose is to investigate whether software-related user feedback available on Twitter
differs across various countries. The results show that the answer is partially yes.
Two out of three analyzed characteristics (content, sentiment) differ in some
cases significantly at the country level. The results of this study have certain
implications for both practitioners and academics in the context of requirements
engineering and software evolution. Previously, when designing algorithms for
processing user feedback, researchers mainly focused on user feedback either
from the United States, or from user groups without a clear indication of their
country of origin, e.g., [2,11,15,21]. Previous studies have already shown that
software engineering practitioners consider the attributes of tweets when priori-
tizing them [8]. According to the surveyed practitioners, the content of the tweet
is one of the most important attributes for prioritization [8]. Our study shows
that country differences have in some cases a statistically significant impact on
the content of user feedback tweets. Our study shows, for example, that India has
a very high proportion of support requests in the sample. This difference could
stem from the cultural differences between India and the rest of the countries
in the sample. Previous research in other contexts has already found that users
from collectivistic cultures (as for example India) have a stronger tendency to
ask for support than people from individualistic cultures [5]. These differences
are especially important for automatic classification models which could have
a better performance among the countries they were trained on or among the
countries with the largest amount of specific content categories.

Our results also show that there are statistically significant differences in
the tweet sentiment from different countries. The tweets from Australia, UK
and USA have significantly different sentiments than tweets from India. This
could stem from the cultural differences in the countries. Collectivistic cultures
are more hesitant to show emotions to out-group members [5] and are keen to
maintain harmony [10], while individualistic cultures (such as Australia, UK

280 S. Tabbassum et al.

and USA are) express their opinion more often [10]. Failing to consider these
differences could lead to a misled preference of those countries that tend to
express their negative sentiments in a more outwardly manner when prioritizing
tweets.

These examples show the potential negative outcomes of not considering
user feedback from diverse user groups for applications with a global coverage
for creating, training, testing, and using algorithms for processing user feedback.
In particular, the large differences in tweets from Western countries and tweets
from India already indicate the importance of a diverse sample. However, except
for India, all other considered countries are Western, leading to a biased sample.
Future studies should investigate the differences in user feedback characteristics
when analysing more cultural diverse countries. Additionally, due to the high
imbalance of the individual countries (58% USA, 19% UK, 10% India, 13%
other) in the sample, the statistical results are prone to errors, as the sample
is highly skewed. Subsequent research should confirm these study results with a
more balanced sample.

Our study also shows that character length was not significantly different
across countries. However, this could also stem from the fact that all analyzed
tweets were in English because this was the language in which sufficient tweets
from geographically diverse countries could be collected in two months. It could
be argued that the users who tweet in English from these countries are not
representative for their countries because not all people from non-native speaking
English countries are able to post an English tweet. This is another potential
bias in the sample. More studies should be conducted to cover tweets in different
languages from a broader range of countries.

Our results will hopefully encourage researchers and practitioners to gather
and analyze large datasets from various countries so that the algorithms process-
ing user feedback are thoroughly designed, validated, and tested to avoid any
algorithm bias. Moreover, the findings provide a first indication of the need to
include the users’ country of origin as a control variable for ensuring data diver-
sity when designing algorithms for processing user feedback data (from Twitter)
that take specific characteristics (e.g., sentiment and content) as input.

6 Conclusion

This study investigated country-level differences in user feedback by analyzing
software-related user feedback from Twitter support accounts of ten applications
from eight countries. The results show that feedback characteristics such as con-
tent and sentiment differ significantly at the country level. These results show
that there is a strong need to collect tweets from diverse countries and back-
grounds, when designing and testing algorithms for the automatic processing of
user feedback, to avoid algorithm bias—as well as when considering feedback as
a source of information during requirements engineering and software evolution.
Moreover, this study encourages researchers and practitioners to further study
the impact of country differences on user feedback from Twitter and other social
media platforms (i.e., Facebook) using large and multilingual datasets.

Towards a Cross-Country Analysis of Software-Related Tweets 281

References

1. Alsanoosy, T., Spichkova, M., Harland, J.: Cultural influence on requirements engi-
neering activities: a systematic literature review and analysis. Requirements Engi-
neering, pp. 1–24 (2019)

2. Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B.: AR-miner: Mining informative
reviews for developers from mobile app marketplace. In: International Conference
on Software Engineering, pp. 767–778 (2014)

3. El Mezouar, M., Zhang, F., Zou, Y.: Are tweets useful in the bug fixing process?
an empirical study on firefox and chrome. Empir. Softw. Eng. 23(3), 1704–1742
(2018)

4. Fischer, R.A.L., Walczuch, R., Guzman, E.: Does culture matter? impact of indi-
vidualism and uncertainty avoidance on app reviews. In: International Conference
on Software Engineering: Software Engineering in Society (ICSE-SEIS), pp. 67–76.
IEEE (2021)

5. Fong, J., Burton, S.: A cross-cultural comparison of electronic word-of-mouth and
country-of-origin effects. J. Bus. Res. 61(3), 233–242 (2008)

6. Guzman, E., Alkadhi, R., Seyff, N.: A needle in a haystack: What do twitter users
say about software? In: International Requirements Engineering Conference (RE),
pp. 96–105. IEEE (2016)

7. Guzman, E., Ibrahim, M., Glinz, M.: A little bird told me: Mining tweets for
requirements and software evolution. In: International Requirements Engineering
Conference (RE), pp. 11–20. IEEE (2017)

8. Guzman, E., Ibrahim, M., Glinz, M.: Prioritizing user feedback from twitter: A sur-
vey report. In: International Workshop on CrowdSourcing in Software Engineering
(CSI-SE), pp. 21–24. IEEE (2017)

9. Guzman, E., Oliveira, L., Steiner, Y., Wagner, L.C., Glinz, M.: User feedback
in the app store: a cross-cultural study. In: International Conference on Software
Engineering: Software Engineering in Society (ICSE-SEIS), pp. 13–22. IEEE (2018)

10. Hofstede, G.H., Hofstede, G.J., Minkov, M.: Cultures and Organizations: Software
of the Mind, Third Edition. McGraw-Hill (2010)

11. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? On automat-
ically classifying app reviews. In: International Requirements Engineering Confer-
ence, pp. 116–125 (2015)

12. Martens, D., Maalej, W.: Extracting and analyzing context information in user-
support conversations on twitter. In: International Requirements Engineering Con-
ference (RE), pp. 131–141. IEEE (2019)

13. Nayebi, M., Cho, H., Ruhe, G.: App store mining is not enough for app improve-
ment. Empir. Softw. Eng. 23(5), 2764–2794 (2018)

14. Oehri, E., Guzman, E.: Same same but different: Finding similar user feedback
across multiple platforms and languages. In: International Requirements Engineer-
ing Conference (RE), pp. 44–54. IEEE (2020)

15. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, H.:
ARdoc: App reviews development oriented classifier. In: Symposium on the Foun-
dations of Software Engineering, pp. 1023–1027 (2016)

16. Panichella, S., Di Sorbo, A., Guzman, E., Visaggio, C.A., Canfora, G., Gall, H.C.:
How can i improve my app? classifying user reviews for software maintenance and
evolution. In: International Conference on Software Maintenance and Evolution
(ICSME), pp. 281–290. IEEE (2015)

282 S. Tabbassum et al.

17. Poblete, B., Garcia, R., Mendoza, M., Jaimes, A.: Do all birds tweet the same?
characterizing twitter around the world. In: International Conference on Informa-
tion and Knowledge Management, pp. 1025–1030 (2011)

18. Prasetyo, P.K., Lo, D., Achananuparp, P., Tian, Y., Lim, E.P.: Automatic classi-
fication of software related microblogs. In: International Conference on Software
Maintenance (ICSM), pp. 596–599. IEEE (2012)

19. Stanik, C., Maalej, W.: Requirements intelligence with openreq analytics. In: Inter-
national Requirements Engineering Conference (RE), pp. 482–483. IEEE (2019)

20. Tizard, J., Rietz, T., Liu, X., Blincoe, K.: Voice of the users: an extended study of
software feedback engagement. Requirements Eng. 27(3), 293–315 (2022)

21. Villarroel, L., Bavota, G., Russo, B., Oliveto, R., Di Penta, M.: Release planning
of mobile apps based on user reviews. In: International Conference on Software
Engineering, pp. 14–24 (2016)

Integrating Implicit Feedback into Crowd
Requirements Engineering – A Research

Preview

Leon Radeck(B) and Barbara Paech

Institute for Computer Science, Heidelberg University, 69120 Heidelberg, Germany
{radeck,paech}@informatik.uni-heidelberg.de

Abstract. [Context/Motivation] In crowd requirements engineering, users are
asked specific questions (explicit pull feedback) to elicit requirements. Existing
approaches collect explicit pull feedback by asking the same questions to all
users. [Problem] Not all questions are meaningful for all users, e.g. regarding
a functionality they have not yet used. Furthermore, without knowing the user
behaviour giving rise to the feedback, it is difficult to understand the reasons for
the feedback. These reasons are important for deriving requirements. [Principal
ideas] Our idea is to use the user behaviour (implicit feedback) to adapt the col-
lection of explicit pull feedback and the derivation of requirements. We embed
this collection of explicit pull feedback into a novel approach that makes use of
a rich palette of discussion elements from crowd-based requirements engineering
to motivate user participation and to support requirements derivation. [Contribu-
tion]. To our best knowledge, this is the first approach that combines the collection
of implicit feedback and explicit feedback with discussion elements from crowd-
based requirements engineering. We sketch our approach and our research and
evaluation plan regarding the application of the approach in the context of the
interdisciplinary and large-scale research project SMART-AGE with around 500
users.

Keywords: Requirements engineering · Crowd · User feedback · Implicit
feedback

1 Introduction

User feedback is essential for the continuous development of software, because it con-
tributes substantially to the elicitation of requirements. Traditional methods of collecting
user feedback, such as interviews or workshops, are only feasible with a limited number
of users as they are very time-consuming. As the number of users increases, the use of
(semi-) automated methods becomes more relevant. These methods do not require the
presence of the persons involved, but can be performed remotely and by many stake-
holders at the same time [5]. Crowd-based requirements engineering (CrowdRE) is an
umbrella term for such approaches to gather and analyse feedback from a large num-
ber of users, also called “crowd”, to derive validated user requirements [4]. Collecting

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 283–292, 2023.
https://doi.org/10.1007/978-3-031-29786-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_20

284 L. Radeck and B. Paech

explicit push feedback (feedback intentionally pushed by the user) is one main app-
roach in CrowdRE [15]. Another main approach in CrowdRE is to request users to give
explicit pull feedback about the product by asking them questions (e.g. “How satisfied
are you with product?”, “What are your ideas on how to improve the product?”) [15].
The problem is that not every question is always suitable for every user. Users who
receive a question about a functionality that they have not used yet, cannot answer the
question. In addition, it is difficult for requirements engineers to understand the reasons
for the feedback without knowing the user behaviour, which led to the feedback. Our
idea is to integrate the capture and analysis of the user behaviour (implicit feedback) into
CrowdRE to adapt the collection of explicit feedback and the derivation of requirements.

In this paper, we present our approach CREII (Crowd-based Elicitation with Inte-
grating Implicit Feedback) that employs the tool smartFEEDBACK (SF) to tailor the
collection of explicit pull feedback to an individual user’s usage behaviour. To motivate
user participation and to allow for requirements derivation, SF further integrates vari-
ous established discussion elements from CrowdRE [15]. Users can comment and vote
answers in real-time by the use of a discussion platform, they can classify and prioritize
explicit feedback, they can indicate a representative sentiment for their feedback and they
can discuss about requirements (see Table 1). We also describe the application of CREII
in the context of the interdisciplinary and large-scale research project SMART-AGE. In
particular, we describe preliminary research in the form of a pilot test, the research plan
for the employment of CREII in the main study and our ideas for evaluation. This paper
is organized as follows: Sect. 2 gives a brief overview of SMART-AGE and the relevant
terminology. Section 3 presents related work. Section 4 describes our approach, and
Sect. 5 presents how the approach is applied in SMART-AGE, in particular preliminary
research, our research and evaluation plan.

2 Project SMART-AGE and Terminology

SMART-AGE. Recent findings on the role and potential of apps for older adults’ quality
of life are encouraging. Major examples for these apps are solutions that address social
engagement and networking, health and disease prevention, and training and fitness. The
5-year project “Smart Aging in Community Contexts: Testing Intelligent Assistive Sys-
tems for Self-regulation and Co-regulation under Real-Life Conditions” (SMART-AGE)
is in its core a complex intervention trial aimed at evaluating different constellations of
apps. These apps are used by around 500 study participants from two communities in
Southwestern Germany (Heidelberg and Mannheim). In this project, we gather feed-
back for three tablet-based apps, namely (1) an app promoting social networking and
social participation (smartVERNETZT), (2) an app providing health advice focusing
on major areas of older adults’ health and functioning (smartIMPULS) and, (3) an app
to tailor the collection of explicit pull feedback to an individual user’s usage behaviour
(smartFEEDBACK). The gathered user feedback is privacy relevant, as both, voice
messages in the explicit feedback and interaction data in the implicit feedback may
allow identifying a person. Therefore, we obtain declarations of consent from the study
participants. We describe our vision of a CrowdRE process adapted to the needs of older
adults and the challenges in implementing our approach in the context of SMART-AGE
in more detail in [11].

Integrating Implicit Feedback into Crowd Requirements Engineering 285

Terminology. In the following, we distinguish feedback pushed by the user (push) or
pulled from the user (pull), and feedback given with the intent to give feedback (explicit)
or given unintentionally (implicit) [8]. Explicit push feedback are either messages or
comments. Explicit pull feedback are answers to questions. Implicit pull feedback are
usage data (e.g. clicks on user interface). Private feedback are messages and answers
from the users, which are only visible to the researchers. Shared feedback are answers
from the users that are visible to everyone. Implicit push feedback (e.g. comments made
by users about the apps during a conversation, that is not happening over SF) is not
considered in our approach, as users are instructed to give their feedback via SF only.

3 Related Work

According to the mapping study [13], in approaches up to 2017 mainly explicit feedback
is collected and used to derive requirements. Approaches that have collected implicit
feedback have used it to estimate service performance or to compute user profiles [13]
but not to combine it with explicit feedback. There are more recent approaches that
are not included in the study, but combine explicit and implicit feedback. CAFE [2]
enriches explicit push feedback with implicit feedback to facilitate the interpretation of
the explicit push feedback. CAFE shows the requirements engineer what screens the
user visited, what UI elements the user interacted with prior to giving feedback, as well
as hardware information (e.g. operation system and device model). CAFE, however,
does not give examples on how exactly the interpretation of explicit push feedback is
facilitated by the enrichment with implicit feedback. FAME [9] combines implicit and
explicit push and pull feedback through an ontology. The ontology links explicit push
and pull and implicit feedback by user, timestamp, application and domain concept.
The ontology is presented to the requirements engineer, which allows the requirements
engineer to get a better understanding of the explicit push and pull feedback and to
prioritize requirements derived from the feedback FAME does not use implicit feedback
to adapt pull feedback questions. QoE probe [3] and Wuest et al. [16] introduce explicit
pull feedback based on implicit feedback. QoE logs the user ID, timestamps of events
on feature level (e.g. starting or completing a feature) and user interaction level (e.g.
user input or an application output) and then triggers a feedback collection form with
the option to answer a question about the users satisfaction and the reasons for the
user behaviour. Wuest et al. [16] triggers feedback collection based on user goals in the
context of a navigation system. An example for a goal is that the user reached her target
destination. This is automatically recognized in the implicit feedback, when the users
GPS coordinates match those of the destination, and then explicit pull feedback through
a feedback form is triggered. We adapt this in CREII, where we trigger explicit pull
feedback when the user does not behave according to the defined ideal usage behaviour.
While all of the mentioned approaches combine implicit and explicit feedback, none of
them integrates discussion elements from crowd-based requirements engineering (see
Table 1) to support user participation and requirements derivation.

286 L. Radeck and B. Paech

4 Crowd-Based Requirements Elicitation Via the CREII Method

In the following, we describe our approach CREII (Crowd-based Elicitation Integrating
Implicit Feedback) that employs the tool SF to collect feedback and supports the deriva-
tion of requirements. The process is shown in Fig. 1. We first give a brief explanation
of Fig. 1 and then we describe the collection of pull feedback based on usage behaviour
by using adaptive questions (Sect. 4.1). After that, we describe our plan for bundling
similar feedback (Sect. 4.2) and the derivation of requirements (Sect. 4.2) in more detail.
An explanation of the steps of CREII with examples is given in Table 1.

Fig. 1. Diagram representing the process of collecting feedback about apps and requirements, as
well as requirements derivation and refinement. Activities in green are executed by users, activities
in blue are executed by requirements engineers. Implicit pull feedback and associated arrows are
red. Everything else is black.

After the users begin to use the apps (U1), they can provide feedback about the apps
by sending messages to the requirements engineers (U4) or they can answer questions
about the apps (U2), that the requirements engineers have asked (R1). The require-
ments engineers ask different types of questions. They ask questions to collect opinions,
improvement ideas and problemswith the apps and they pose adaptive questions that ask
for reasons for the observed implicit feedback of the users and corresponding improve-
ment ideas (see Sect. 4.1). The questions can address the app itself, as well as functional
and non-functional requirements of the app. After the users have answered questions
about the apps, they can comment and vote other answers to the same questions, as far
as other users shared their answers (UR3). We stipulate that this discussion possibility
enhances the motivation to the user to give feedback. The requirements engineers can
also comment the answers to questions and messages about apps to thank the users
for their feedback and to ask for clarification (UR3). The users can comment back on
messages that they sent (UR3). The requirements engineers do not vote on answers,
because they do not want to influence the opinion of the users. Furthermore, we explic-
itly do not allow users to comment on answers of questions that they did not answer

Integrating Implicit Feedback into Crowd Requirements Engineering 287

by themselves, because we believe a minimum level of commitment is necessary to
have a meaningful discussion. Based on the collected explicit and implicit feedback,
the requirements engineers derive and refine requirements (R2). These requirements are
presented to the users and users are asked about their opinions (R3). Implicit feedback is
used during the derivation, to make sure that users receive only questions about require-
ments for apps, that they have accessed. To support requirements derivation, users can
answer the questions about the requirements (U4), send messages about the require-
ments to the requirements engineers (U6), and comment and vote on the requirements.
The requirements engineers can comment answers and messages about requirements
in the same way as answers and messages about apps (UR5). Based on the feedback
about the requirements, the requirements engineers derive new requirements and refine
existing requirements (R2). Whenever users give feedback, they have the opportunity to
assign a priority (low, medium, high) to the feedback and a sentiment (very dissatisfied,
dissatisfied, neutral, satisfied, very satisfied). These two attributes can be used by the
requirements engineers to bundle feedback (see Sect. 4.2). The users can also indicate
whether to share the feedback with other users or whether to give the feedback privately
to the researchers. This is important because certain users place high value on privacy
[12].

4.1 Collecting Pull Feedback by Using Adaptive Questions

Adaptive questions ask for reasons for the observed implicit feedback of the users and
corresponding improvement ideas. The process of asking adaptive questions for the app
smartIMPULS is illustrated in Fig. 2.

The user with user id “User1” starts interacting with the app (A). The resulting
implicit feedback is sent to SF (B). The implicit feedback consists of the ID of the user
(UserID), the app that was used (App), the event that happened (Event – e.g. CLICK
for clicking on a user interface element or START for starting the app), the context of
the event (Context – e.g. which user interface element was clicked on), a foreign ID
referencing an entity of the app that was used (FID – e.g. the ID of the answer) and the
data towhich the eventwas created (Created). SF receives the implicit feedback and saves
it to the database (C). SF now periodically loads the history of the implicit feedback (D)
and checks whether it does not represent the ideal usage behaviour of smartIMPULS
(E). The ideal usage behaviour is configured initially by the requirements engineers. It
consists of different metrics, e.g. the ideal usage frequency of the app, the ideal usage
duration of the app and the ideal answer rate to questions, as in smartIMPULS the
user has to answer certain questions about his or her health. Checking for ideal usage
behaviour means calculating the metrics based on the history of implicit feedback (e.g.
accumulating the time difference between START and STOP events per day, to get the
usage duration per day) and then comparing it to the expected ideal behaviour (10min per
day). The check happens once per day. If the implicit feedback does not represent ideal
usage behaviour, the user receives an adaptive question (F), which asks for the reason
and for improvement ideas. Adaptive questions are only asked again after some time
has passed, so that the user does not feel disturbed. When collecting pull feedback with
adaptive questions (for an example, see Q2 in Table 1), we combine asking for the reason
of a users’ usage behaviour with asking for an improvement idea, because knowing the

288 L. Radeck and B. Paech

Table 1. Explanation of steps of CREII with examples

Step Step description
(discussion elements
are underlined)

Action (Q = Question, A = Answer, C = Comment,
M =Message)

R1 Requirements
engineers ask
questions

Q1: How could smartIMPULS be improved in your
opinion?
Q2 (adaptive): Why do you not use smartIMPULS
every day”

U2 Users answer
questions

Q1A1: It would help to be reminded to answer
questions
Q2A1: I find the questions not suitable for me

UR3 Users comment and
vote

Some users vote for Q1A1, some users vote for Q2A1
Q1A1C1: “I’d like to be reminded every day.”

UR3 Requirements
engineers comment

Q1A1C2: “Thank you very much for your input.”
Q2A1C1: “Why are the questions not suitable for you?

U4 Users send messages M1: The letters of the app are too small for me to read

R2 Requirements
engineers derive and
refine requirements

From Q1A1 a new system function “Remind user to
answer questions” is extracted. By Q1A1C1 the SF is
detailed by adding a rule about the frequency of
reminding. M1 details the NFR Accessibility

R3 Requirements
engineers ask
questions about
requirements

To validate the SF, the question Q3 “How would you
like a new functionality in smartIMPULS that
reminds you every day to answer questions? Please
explain your judgement?” is asked
To validate M1, the question Q4 “How would you like
an increased font size in smartIMPULS? Please
explain your judgement?” is asked

U4 Users answer
questions

Q3A1: “I would love that, because I am a bit
forgetful.”
Q3A2: “I am a bit sceptic.”
Q4A1: “That’s a good idea, then I use the app without
my glasses.”

UR5 Users comment and
vote

Some users vote for Q3A1, some user vote for Q3A2
Q3A2C1: “Me too, I don’t know if that helps”

UR5 Requirements
engineers comment

Q3A2C2: “Thanks for giving feedback. Why are you
sceptic?”

U6 Users send messages M2: I don’t want to tell it publicly, but I think
reminders about answering questions would stress
me.”

…

reason alone might not be enough to derive a requirement. Adaptive questions can avoid
asking users for feedback before the users have gained minimal experience with the app

Integrating Implicit Feedback into Crowd Requirements Engineering 289

Fig. 2. Diagram representing the process of asking adaptive questions.

or functionality, which would be disturbing [15]. In SMART-AGE, each user joins the
study at a different time. We give the users a few days to get familiar with the apps and
then start asking the questions relative to the users’ start date.

4.2 Bundling of Explicit Feedback

The more explicit feedback is collected, the greater the likelihood that feedback will be
similar. To save effort, we bundle similar feedback on the basis of its attributes before
deriving requirements. Table 2 shows attributes that we deem useful for bundling.

Table 2. Attributes of feedback used for bundling (R= Specified by requirements engineer, U=
Specified by user, A = Automatically recorded by SF)

R U A Attributes

X Task Oriented Requirements Engineering (TORE) Category [10]
(Goal & Task, Domain, Interaction, System Level)

X Degree of readability (measured by different common readability formulas)

X Category (improvement, problem, opinion, neutral)

X Sentiment (very happy, happy, neutral, sad, very sad)

X Priority (low, normal, high)

X Implicit feedback (usage behaviour)

We think that TORE [10] could helpwith bundling, because feedback can be grouped
by different levels. We think that the degree of readability of feedback is helpful for
bundling, because unreadable feedback can contribute less to requirements derivation.

290 L. Radeck and B. Paech

We also think that the category of feedback plays a role for requirements derivation.
Feedback of the category improvement could have more potential for deriving require-
ments than feedback which is classified as an opinion. Feedback can also be bundled
by sentiment and priority. Feedback with low happiness and an indication of the reason
could be especially useful for improving the apps. Feedback that was assigned a high
priority by the user is more relevant for requirements derivation than feedback with low
priority. We also think that implicit feedback can be helpful to bundle feedback. For
example, feedback can be bundled by the users’ usage time.

5 Application of CREII in SMART-AGE

Preliminary Research. Weperformed a convincing proof-of-concept version of CREII
in a pilot test with 20 participants over the period of one week. Overall, 208 responses
to 24 questions and 33 messages were sent. Feedback for SF was very positive.

Research Plan. We follow the design sciencemethodology proposed byWieringa [14].
We plan to deploy CREII in SMART-AGE to collect feedback and derive requirements
for the apps from around 500 users in the first fivemonths of the study and then follow up
with one month of requirement validation and refinement. For the evaluation of CREII,
we also ask questions about the acceptance of SF by using the System Usability Scale
[1]. In order not to overwhelm the users, we plan to ask them nomore than five questions
on the same day. As a reminder and for motivation, we also plan to remind users after a
week of inactivity to participate in the feedback collection again.

Evaluation. Table 3 shows our research questions.

Table 3. Research questions

Usage behaviour

RQ1 Does the usage behaviour of a user influence the quality or quantity of the provided
feedback?

Feasibility

RQ2 Is it feasible to collect high quality feedback with CREII and SF?

RQ2.1 What is the quantity and quality of the collected feedback?

RQ2.2 Do adaptive questions and discussion elements influence the quality or quantity of the
provided feedback?

RQ2.3 Does reminding to give feedback influence the quality or quantity of feedback?

RQ3 Is it feasible to collect high quality requirements with CREII and SF?

RQ3.1 What is the quantity and quality of the derived requirements?

Acceptance

RQ4 What is the acceptance of SF?

Integrating Implicit Feedback into Crowd Requirements Engineering 291

RQ1 investigates whether the usage behaviour of a user influences the quality or
quantity of feedback. For example, high usage duration could lead to feedback of higher
quality. RQ2 and RQ3 investigate the feasibility of CREII and SF to collect high quality
feedback and high quality requirements. RQ2.1 investigates the quantity and quality of
the collected feedback and RQ3.1 investigates the quantity and quality of the derived
requirements. Investigating the quantity and quality of derived requirements allows us
to make a comparison to similar approaches [15]. RQ2.2 investigates the influence of
adaptive questions or discussion elements on the quality and quantity of feedback. If
adaptive questions or discussion elements have a positive influence on the quality and
quantity of feedback, then it would make sense for others to implement this practice
as well. RQ2.3 investigates whether reminding to give feedback affects its quality of
quantity. Reminding is easy to implement and would be an implementable practice for
others. RQ4 evaluates the acceptance of SF through the questions of the SystemUsability
Scale [1].

Quality of Requirements. We assess the quality of requirements manually. We use
established quality criteria from the International Requirements Engineering Board
(IREB) manual [7], such as Adequacy, Necessity, Unambiguity, Completeness, Under-
standability, Verifiability, Consistency, Redundancy.

Quality of Feedback. We assess the quality of feedback manually. To our best knowl-
edge there does not exist an established set of quality aspects for user feedback about
software. We therefore derive quality aspects from established standards. We plan to
adapt the characteristics for data quality of ISO 25012 [6] and the quality criteria for
requirements (IREB) on feedback and to establish metrics that let us quantify each
quality aspect manually.

Limitations and Risks. Eliciting pull feedback requires the users to answer the ques-
tions of us researchers. This can be time-consuming and strenuous, especially for elderly
people. In [11] we discuss how CREII is tailored to the individual needs of older adults.

Acknowledgement. We thank the Carl Zeiss Foundation for the generous 5-year funding of
SMART-AGE (P2019-01-003; 2021–2026).

References

1. Brooke, J.: SUS - a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Ian Lyall,
M., Bernard, W. (eds.) Usability Evaluation in Industry, pp. 207–212 (1996)

2. Dzvonyar, D., Krusche, S., Alkadhi, R., Bruegge, B.: Context-aware user feedback in con-
tinuous software evolution. In: Proceedings of the International Workshop on Continuous
Software Evolution and Delivery, CSED 2016, pp. 12–18 (2016).https://doi.org/10.1145/289
6941.2896952

3. Fotrousi, F., Fricker, S.A.: QoE probe: a requirement-monitoring tool. CEURWorkshop Proc.
1564, 7–8 (2016)

4. Groen, E.C., et al.: The crowd in requirements engineering: the landscape and challenges.
IEEE Softw. 34, 44–52 (2017). https://doi.org/10.1109/MS.2017.33

https://doi.org/10.1145/2896941.2896952
https://doi.org/10.1109/MS.2017.33

292 L. Radeck and B. Paech

5. Groen, E.C.: How Requirements Engineering can benefit from crowds. Requirements Eng.
Mag., 1–13 (2016)

6. International Organization for Standardization/International Electrotechnical Commission:
Software engineering—Software product Quality Requirements and Evaluation (SQuaRE)—
Data quality model ISO/IEC 25012:2008(E) (2008)

7. IREB: Certified Professional for Requirements Engineering – Foundation Level. Karlsruhe,
Germany (2015)

8. Maalej, W., Happel, H.-J., Rashid, A.: When users become collaborators: towards continuous
and context-aware user input. In: International Conference OOPSLA, pp. 981–990. ACM
(2009). https://doi.org/10.1145/1639950.1640068

9. Oriol, M., et al.: FAME: supporting continuous requirements elicitation by combining user
feedback andmonitoring. In: IEEERequirementsEngineeringConference (RE), pp. 217–227.
IEEE (2018). https://doi.org/10.1109/RE.2018.00030

10. Paech, B., Kohler, K.: Task-driven requirements in object-oriented development. In: do Prado
Leite, J.C.S., Doorn, J.H. (eds.) Perspectives on Software Requirements. The Springer Inter-
national Series in Engineering and Computer Science, vol. 753. Springer, Boston,MA (2004).
https://doi.org/10.1007/978-1-4615-0465-8_3

11. Radeck, L., et al.: Understanding IT-related well-being, aging and health needs of older
adults with crowd- requirements engineering. In: Workshop on Requirements Engineering
forWell-Being,Aging, andHealth of the InternationalRequirementsEngineeringConference,
pp. 57–64. IEEE (2022). https://doi.org/10.1109/REW56159.2022.00018

12. Tizard, J., Rietz, T., Blincoe, K.: Voice of the users: a demographic study of software feed-
back behaviour. In: IEEE International Conference on Requirements Engineering, pp. 55–65
(2020). https://doi.org/10.1109/RE48521.2020.00018

13. Wang, C., Daneva, M., van Sinderen, M., Liang, P.: A systematic mapping study on crowd-
sourced requirements engineering using user feedback. J. Softw. Evol. Process. (2019). https://
doi.org/10.1002/smr.2199

14. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engi-
neering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

15. Wouters, J., Menkveld, A., Brinkkemper, S., Dalpiaz, F.: Crowd-based requirements elici-
tation via pull feedback: method and case studies. Requirements Eng. 27, 429–455 (2022).
https://doi.org/10.1007/s00766-022-00384-6

16. Wüest, D., Fotrousi, F., Fricker, S.: Combiningmonitoring and autonomous feedback requests
to elicit actionable knowledge of systemuse. In:Knauss, E.,Goedicke,M. (eds.)REFSQ2019.
LNCS, vol. 11412, pp. 209–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
15538-4_16

https://doi.org/10.1145/1639950.1640068
https://doi.org/10.1109/RE.2018.00030
https://doi.org/10.1007/978-1-4615-0465-8_3
https://doi.org/10.1109/REW56159.2022.00018
https://doi.org/10.1109/RE48521.2020.00018
https://doi.org/10.1002/smr.2199
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/s00766-022-00384-6
https://doi.org/10.1007/978-3-030-15538-4_16

RE in Practice

Authoring, Analyzing, and Monitoring
Requirements for a Lift-Plus-Cruise

Aircraft

Tom Pressburger1(B), Andreas Katis2(B), Aaron Dutle3(B),
and Anastasia Mavridou2(B)

1 NASA Ames Research Center, Moffett Field, CA, USA
tom.pressburger@nasa.gov

2 KBR, NASA Ames Research Center, Moffett Field, CA, USA
{andreas.katis,anastasia.mavridou}@nasa.gov

3 NASA Langley Research Center, Hampton, VA, USA
aaron.m.dutle@nasa.gov

Abstract. [Context & Motivation] Requirements specification and
analysis is widely applied to ensure the correctness of industrial sys-
tems in safety critical domains. Requirements are often initially written
in natural language, which is highly ambiguous, and as a second step
transformed into a language with rigorous semantics for formal analy-
sis. [Question/problem] In this paper, we report on our experience
in requirements creation and analysis, as well as run-time monitor gen-
eration using the Formal Requirement Elicitation Tool (FRET), on an
industrial case study for a Lift-Plus-Cruise concept aircraft. [Principal
ideas/results] We study the creation of requirements directly in the
structured language of FRET without a prior definition of the same
requirements in natural language. We focus on requirements describing
state machines and discuss the challenges that we faced, in terms of cre-
ating requirements and generating monitors. We demonstrate how realiz-
ability, i.e., checking whether a requirements specification can be imple-
mented, is crucial for understanding temporal interdependencies among
requirements. [Contribution] Our study is the first complete attempt
at using FRET to create industrial, realizable requirements and gener-
ate run-time monitors. Insight from lessons learned was materialized into
new features in the FRET and JKind analysis frameworks.

1 Introduction

The process of writing requirements for safety critical systems can be an arduous
task, as engineers need to avoid ambiguous semantics and ensure that the resulting
specification excludes unsafe system behavior. Formal specification can help engi-
neers overcome both obstacles, as requirements are translated into unambiguous
constructs using mathematical logic. Still, writing requirements using a formal lan-
guage is not straightforward, especially when the author lacks a solid background
in logical concepts. Furthermore, the analysis of such requirements can often leave
engineers in a state of confusion, as they struggle with the interpretation of both
positive and negative results.
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright
protection may apply 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 295–308, 2023.
https://doi.org/10.1007/978-3-031-29786-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_21

296 T. Pressburger et al.

The Formal Requirements Elicitation Tool (FRET) [9] is an active, open-
source research project [1] developed at NASA Ames, providing a highly accessible
requirements engineering and analysis framework. It is designed so that engineers
with varying levels of experience in formal methods can express requirements using
structured natural language, observe their behavior through interactive simula-
tion, and analyze their correctness with respect to their realizability; i.e., answer
whether a system implementation exists that is guaranteed to conform to the given
specification no matter the inputs received from its environment. The require-
ments can then be used to generate run-time monitors, which are programs that
detect the violation of a particular requirement during the execution of the system.
A tool chain beginning with FRET allows for partially automatic generation of
such monitors.

In this paper, we briefly present FRET (Sect. 2) and report our experience
using it to author and analyze requirements (Sect. 4) for an industrial case study
on a Lift-Plus-Cruise concept aircraft (Sect. 3) as well as generate run-time mon-
itors (Sect. 5). There is a focus on formulating state machines using FRET. We
showcase challenges that we encountered, corresponding to common problems in
requirements engineering, from expressing said requirements, to checking their
realizability and actually interpreting the analysis results. We furthermore dis-
cuss how we were able to address issues, not only through the process of refining
the specification, but also in terms of improving existing features of FRET to
improve explainability of analysis results. This top-to-bottom study provided us
with valuable insights, which we describe through lessons learned (Sect. 6).

Related Work: Previous work explored using FRET for industrial-level case
studies, in cases where natural requirements specification already existed [6,20].
In contrast, in this paper we create requirements from informal diagrams and
incorporate realizability checking as part of the workflow. Similar studies have
been conducted in the past for other requirements specification tools. Previous
works in the RAT [24] SPECTRA [19] and LTSA [17] tools has showed how
requirements expressed in Linear Temporal Logic could be evolved, guided by
the results of consistency and realizability analysis in a Boolean setting. The
EARS-CTRL [18] tool provides a natural language, and its analysis for syn-
thesizing controllers is also in a Boolean setting. In comparison, requirements
written in FRET’s language can deal with linear arithmetic expressions over
unbounded integer and real numbers. A study analyzing control software in the
AGREE framework identified errors in specification using realizability check-
ing [3]. Notably, the checking algorithm used is known to be unsound w.r.t.
unrealizable results [8], whereas FRET employs sound procedures [12,16]. The
CLEAR [4] tool also uses a constrained natural language to formalize require-
ments. It can check completeness and consistency, but not realizability.

2 Background

FRET provides a collection of features for the creation, management and anal-
ysis of requirements. We next present the features that were used in this paper,
namely the FRETish language, the realizability checking component and finally
the requirements export functionality to achieve synthesis of run-time monitors.

Authoring, Analyzing, and Monitoring Requirements 297

Requirement Specification and Formalization. Users write requirements
in FRETish, i.e., a restricted natural language with standard mathematical
expressions [9]. A FRETish requirement is described using up to six sequential
fields (the * symbol designates mandatory fields): 1) scope specifies the time
intervals where the requirement is enforced, 2) condition is a Boolean expression
that triggers the response to occur at the time the expression’s value becomes
true from false, or is true at the beginning of the scope interval, 3) component*
is the system component that the requirement is levied upon, 4) shall* is used
to express that the component’s behavior must conform to the requirement,
5) timing specifies when the response shall happen, subject to the constraints
defined in scope and condition and 6) response* is the Boolean expression
that the component’s behavior must satisfy.

FRETish provides 8 scopes: global , in, before, after , notin, only in, only
before, and only after . The scope global means always ; the others are with respect
to when the system is in a mode or satisfies a Boolean expression. The optional
condition field is introduced by any of the words upon, when, or if , which are
synonymous. FRETish provides 10 timings: immediately (meaning: at the same
time point), at the next timepoint , always , eventually , never , for N time steps,
within N time steps, after N time steps, until bool_expr, and before bool_expr.
When the scope is omitted it is taken as global ; when the condition is omitted,
it is taken as true; when the timing is omitted, it is taken as eventually .

The Boolean expressions use the standard logical symbols, as well as stan-
dard arithmetic symbols and relations. FRETish also supports several prede-
fined predicate symbols: preBool(init,x) (resp., preReal(init,x)) denotes, at the
first time point, the value of the Boolean (resp., real) expression init, and subse-
quently the value of the Boolean (resp., real) expression x at the previous time
point; absReal(x) denotes the absolute value of the real-valued expression x ; and
FTP is true at the first time point in the execution, and is false otherwise.

FRETish requirements are based on rigorous semantics and thus, have a
precise, unambiguous meaning. Once the requirements are specified, FRET pro-
duces formalizations in several logics. In this study, we make use of past-time
metric linear temporal logic (pmLTL).

To capture commonly occurring requirement patterns, FRET provides a
template facility. This allows the user to construct FRETish requirements by
instantiating placeholders in a template.

Realizability Checking. Informally, a specification is realizable if we can imple-
ment a system, such that it always conforms to the given requirements, while
considering inputs from an uncontrollable environment (sensors, user input, etc.).
A proof of realizability not only establishes the truth that a system can be imple-
mented for the given requirements, but also the fact that, given proper care in
the system implementation, the requirements themselves are free of conflicts that
would translate into unsafe behavior.

The analysis portal in FRET provides means to examine specifications in
terms of their realizability, as well as generate artifacts that help engineers fur-
ther understand the analysis results. The following features are available [13]:

298 T. Pressburger et al.

— Compositional analysis: As a preprocessing step, FRET decomposes the spec-
ification, if possible, into a set of connected components, based on the outputs
exercised in each requirement. This decomposition is sound w.r.t. realizability,
allowing the independent analysis of each one of the computed components [21].
— A portfolio of engines and algorithms that support infinite theories. FRET

uses both the Kind 2 [5,16] and JKind [7,12] model checkers for realizability
analysis. Both engines are SMT-based, supporting unbounded theories of integer
and real arithmetic, while also providing means to compute counterexamples
from unrealizable specifications, in the form of deadlocking execution traces.
— Diagnosis of unrealizable specifications. FRET employs diagnostic algo-
rithms to provide further feedback in unrealizable requirements. This is achieved
through the computation and simulation of minimal sets of unrealizable require-
ments (known as minimal conflicts) [14,15]. Counterexamples that demon-
strate unrealizability can be graphically displayed in the interactive simulator in
FRET.

Exporting Requirements for Monitor Synthesis. Having created a set of
realizable requirements, we can now generate runtime monitors. To this end,
FRET generates and exports a specification that can be digested by the Ogma

tool [23] for the generation of Copilot monitors [22]. This specification contains
formalized requirements and information about the variable types referenced in
the requirements. Ogma then produces an input specification for Copilot, and
finally Copilot generates C code suitable for use in hard real-time systems,
running without dynamic memory allocation in predictable space and time. The
C code accepts inputs to be monitored and invokes user-provided handlers when
the requirements are violated. The creation and integration of these monitors
is intended to be as seamless as possible; the properties to be monitored are
written in FRETish, and little to no code is required to be written by hand.

3 The Lift Plus Cruise Case Study

Fig. 1. The LPC vehicle.

Because of its ability to be used at many
stages of the development lifecycle, and
the familiarity of the researchers with
the tool, FRET was chosen as a main
component in a NASA project studying
safety assurance for a novel Lift-Plus-
Cruise (LPC) electric Vertical Takeoff and
Landing (eVTOL) aircraft. There are sev-
eral different concepts for VToL aircraft
being investigated by the aviation com-
munity, including NASA [26]. One such
design has a number of lifting rotors
attached to the wings and a forward pushing propeller on the rear of the
aircraft (Fig. 1). NASA is developing models of the flight characteristics of
this LPC concept, as well as simulation capabilities, and control schemes [11].

Authoring, Analyzing, and Monitoring Requirements 299

Fig. 2. Control Allocation Schedule. KGS/KIAS: ground/indicated air speed (knots).

The project investigated aspects of safety assurance of the aircraft including haz-
ard analysis, requirements capture, formal modeling, and runtime monitoring.
FRET was used to capture requirements for the vehicle, and the collection of
requirements served as a model of how the vehicle was expected to behave. Some
of these requirements were then used to generate runtime monitors for use in
the simulation environment.

Due to the design of the aircraft, several distinct control regimes may apply
at different phases of flight. For example, during takeoff and landing, the air-
craft motion is controlled by the lifting rotors only, and the flight surfaces (wings,
ailerons, etc.) have no effect (thrust-borne mode, TB). On the other hand, dur-
ing the higher speeds of the en-route phase, the wings provide lift, the rear
propeller provides thrust, and the lifting rotors are inactive (wing-borne mode,
WB). Collective control means that all of the rotors are commanded to increase
or decrease torque, leading to more or less “heave” (vertical climb). Differen-
tial control means that the rotors are commanded to have differing amount of
torques, enabling control of pitch, yaw and roll.

Figure 2 shows the ranges of air/ground speeds for the control regimes. The
hashed areas indicate regions of hysteresis; i.e., control lag. For example, if the
vehicle is slowing down from the wing-borne mode (WB), the transition to semi-
wing-borne (SWB) kicks in at an indicated airspeed of 90 knots (kias <= 90.0),
whereas if the vehicle is speeding up from a SWB mode, the transition to WB
mode occurs at kias > 100.0 knots; similarly for the transitions between semi-
thrust-borne (STB) mode and SWB mode. The vehicle remains in the thrust-
borne mode (TB) as long as kgs <= 20.0 knots and Hover Control (HC) mode
is selected.

300 T. Pressburger et al.

The main research questions that we aim to answer through this work are:
1. Can we take informal descriptions of how the vehicle is supposed to operate
and behave, and (through FRET) turn this into a formal description/model that
can be analyzed? and 2. Can we use this formal model to easily create monitors?

4 Writing Requirements for LPC

The work presented in this paper was the result of multiple iterations between
requirements formalization and their respective analysis in terms of realizability.
Requirements development was done iteratively, over a period of eight months
part-time, with the requirements researchers meeting with the aircraft controls
researchers regularly to refine both the requirements and controls. The require-
ments development revealed some ways that FRET could be enhanced to better
capture the types of requirements needed, and to analyze them, so FRET addi-
tional feature development occurred concurrently. While the current work is a
research project, the overall concept of formally capturing and analyzing require-
ments for a developer to test against, and using these requirements as runtime
monitors, is envisioned as a method to help assure safety of future aircraft.

4.1 Initial Formalization

To validate the control scheme concept, and facilitate use in further development
and refinement of control software, we undertook the formal modeling in FRET

of the control allocation of the LPC concept during the landing transition phase.
This phase transitions from fully wing-borne flight to fully thrust-borne, with
intermediate phases semi-wing-borne and semi-thrust-borne.

Table 1. LPC Variables.

cr boolean output

dr boolean output

fcs boolean output

HC boolean output

rearprop boolean output

kgs double output

kias double output

wind_speed double input

lift_mode integer output

TB integer constant 0

STB integer constant 1

SWB integer constant 2

WB integer constant 3

Our task is to develop realizable require-
ments for the control schedule (Fig. 2). The
complete set of requirements is in the tech-
nical report [25]. The variables used in these
requirements, as well as their types are
shown in Table 1. For the purposes of realiz-
ability checking and monitor generation, we
need to declare each variable as either an
input or output. An output is a variable that
the system controls. An input is a monitored
variable, one whose value is set by the envi-
ronment that the system has no control over.

We start with a requirement that the
vehicle be in one of the lift modes at each
time point. Note that integer constants in
Table 1 are used to simulate a lift-mode enu-
merated type.
[LIFT_MODE]: The vehicle shall always satisfy lift_mode = TB | lift_mode =
STB | lift_mode = SWB | lift_mode = WB

Authoring, Analyzing, and Monitoring Requirements 301

Fig. 3. Lift Mode State Machine derived from Fig. 2. The acronyms are: HC = hover
control, B = borne, T = thrust (rotors), W = wing, S = semi-, kgs = ground speed
(knots), kias = indicated air speed (knots).

Fig. 4. Differential Rotors (DR), Collective Rotors (CR), and Flight Control Surface
(FCS) state machines derived from Fig. 2.

We also require that the rear propeller be always used, except in HC mode:
[REARPROP]: The vehicle shall always satisfy rearprop xor HC

To specify the control schedule requirements, we chose the clear and suc-
cinct way that state machines provide, and expressed those state machines in
FRETish. Initially, we transformed what is shown in Fig. 2 into state machines.
E.g., for the required behavior of the lift modes, we created Fig. 3: the four
states correspond to the lift modes and the black, solid-line guarded transitions
define when a mode change may happen. For instance, when in STB mode and
the ground speed is less than or equal to 20 knots (kgs <= 20), the pilot, or an
automated control system, can switch to HC mode, allowing the aircraft to enter
the TB lift mode. Similarly, the control allocation state machines are represented
in Fig. 4. The guards on the transitions refer to the conditions on the indicated
airspeed in knots (kias) and ground speed (kgs). Initially, we designed Figs. 3
and 4 without the red, dashed-line loop transitions.

To capture transition requirements, we created the following FRET template
to express transitions from state s0 to a state s1 under condition p:

Upon state = s0 & p the vehicle shall at the next timepoint satisfy state = s1

E.g., the transition originating from state WB to state SWB in Fig. 3 can be
written as follows: [WB_TO_SWB]: Upon lift_mode = WB & kias <= 90.0 the
vehicle shall at the next timepoint satisfy lift_mode = SWB

302 T. Pressburger et al.

4.2 Refinement Using Realizability Checking

Using the realizability analyzer over this initial set of requirements, led us to
discover that we also need a stay requirement that says the state remains s0
if none of the exit transition conditions from s0 hold. Otherwise, the required
behavior is under-specified, and hence anything could happen after a transi-
tion to a particular state when no transition condition applies. In particular,
realizability analysis, as shown in Table 2, reported a realizable trace where the
aircraft state transitions from wing-borne mode directly to thrust-borne mode
without visiting intermediate modes. The stay requirements are necessary for
specification completeness: the behavior under all conditions must be specified,
so the disjunction of the guards of the transitions from a state needs to be a
valid formula [10]. In the past, FRET had a template for writing state-machine
transition requirements, which originated from a set of given natural-language
requirements [20] that were neither realizable nor complete. We improved on
this template, by having a simplified transition requirement template that uses
a single state variable, as well as adding a template for stay requirements. The
new templates allow for complete specifications of state machine requirements.

One could express the stay requirement in FRETish as: When state = s0&P ,
the vehicle shall at the next timepoint satisfy state = s0, where P =!p1 & . . .& !pn
is the conjunction of negated guards that belong to outgoing transitions of s0.
However, this would only constrain the value of state when the condition tran-
sitioned from false to true, not whenever the condition held. Instead, the stay
requirement can be expressed with the following FRET template (see [25]):

Vehicle shall always satisfy if preBool(false, state = s0 &P) then state = s0

Currently, this is formalizable by FRET only in pmLTL. This was adequate
for this case study, since both realizability analysis and monitor generation rely
on the past-time formalization. If, in a different situation, a future-time formula
is needed, it can be expressed in FRETish without preBool as Upon state
= s0 & P the vehicle shall until state = s0 & !P satisfy state = s0. This says
that the system, upon entering state s0 when no transition condition applies, will
remain in state s0 until and including the time point where a transition condition
holds. The two formulations were shown, using the NuSMV model-checker, to be
equivalent. Although equivalent logically, realizability analysis using the second
formulation was 15 to 100 times slower; we are investigating the cause. We show
below stay transition requirements from the wing-borne mode (Fig. 3) and flight
control surfaces (Fig. 4). Other stay and transition requirements were written
in a similar manner. These requirements correspond to the dashed-line loop
transitions (Figs. 3 and 4).
[WB_STAY_ON_pre]: The vehicle shall always satisfy
if preBool(false, lift_mode = WB & kias > 90.0) then lift_mode = WB
[WB_STAY_ON_until]: Upon lift_mode = WB & kias > 90.0 the vehicle shall
until lift_mode = WB & kias <= 90.0 satisfy lift_mode = WB

Authoring, Analyzing, and Monitoring Requirements 303

Table 2. Example trace from incomplete specification.

Variable
Step

0 1 2 3 4 5 6

HC false false false false false false false
kgs 120 120.25 110.25 111.5 103.5 100 90.25
kias 120 120.25 110.25 111.5 103.5 100 90.25
lift_mode WB TB STB SWB WB SWB SWB

Table 3. Example trace from the final specification.

Variable
Step 0 1 2 3 4 5 6 7 8 9 10 11

HC false false false false false false false false false false true true
kgs 120 110 100 90 80 70 60 50 40 30 20 20
kias 120 110 100 90 80 70 60 50 40 30 20 20
lift_mode WB WB WB WB SWB SWB SWB SWB SWB SWB STB TB

[FCS_STAY_OFF]: The vehicle shall always satisfy if preBool(false, !fcs & kias
<= 40.0) then !fcs
[FCS_TURN_ON]: Upon !fcs & kias > 40.0 the vehicle shall at the next timepoint
satisfy fcs

So far, we have specified the required behavior for transitioning from wing-
borne lift mode to thrust-borne mode. Still, we are not done: we need to specify
initial conditions, as well as a time target before which the transition should
complete. We try the scenario where the initial airspeed is 120 knots, the initial
lift mode is wing-borne, the ground speed always equals the airspeed, and the
airspeed changes by no more than 10 knots in consecutive time points:
[INIT_KIAS]: The vehicle shall immediately satisfy kias = 120.0
[INIT_LIFT_MODE]:
The vehicle shall immediately satisfy lift_mode = WB <=> kias >= 90.0
[KIAS_KGS]: The vehicle shall always satisfy kias = kgs
[KIAS_DERIVATIVE]: The vehicle shall always satisfy
FTP | absReal(preReal(0.0, kias) − kias) <= 10.0

All that is now left is to define a possible goal about lift_mode:
[REACH_HOVER]: The vehicle shall within 10 ticks satisfy lift_mode = TB

We now claim that we have a complete formalization. Is it realizable, though?
Careful inspection should result in a “no” answer, as 10 ticks is not enough time
to complete the transition. The realizability analysis supported this claim: the
requirements are unrealizable for 10 ticks and realizable for 11 ticks. Table 3
shows a positive trace from the latter result, where the system is able to complete
the transition from wing-borne to thrust-borne in a proper manner, exercising
the intended intermediate mode transitions.

304 T. Pressburger et al.

Fig. 5. Runtime monitor displays: monitor violation (left), no violation (right).

4.3 Reasoning About the System’s Environment

Notably, the requirements presented thus far do not constrain the system’s
input. We experimented with additional requirements involving wind, changing
[KIAS_KGS] to specify that kgs is the sum of kias and the wind_speed input
variable (hence uncontrollable). Furthermore, we added the following assumption
on the environment: [WIND_SPEED_assumption]: The vehicle shall always
satisfy absReal(wind_speed) <= 30.0

We expected that this assignment for kgs would prohibit entering TB mode
because the wind would prevent kgs <= 20. However, in about a minute, real-
izability checking said that it was realizable. Examination of a positive trace
revealed that this was due to kias becoming negative; i.e., the vehicle flying
backwards. The diagram we were initially given (Fig 2) is misleading: the vehi-
cle can only maneuver backwards slowly, while in TB mode, to make small
corrections while landing. When a requirement was included that said kias >=
0, the requirements were shown to be unrealizable, even when increasing the
time limit in [REACH_HOVER] to 16 ticks. Strengthening the assumption
to |wind_speed| <= 20 fixed the issue, as the requirements were shown to be
realizable within 13 ticks, which makes sense as kias needs to be reduced to zero
for kgs to be <= 20, for any valid wind speed.

5 Generation of Run-Time Monitors

We integrated the C code generated by Copilot into the FlightDeckZ Vehicle
Simulation Environment [2], monitoring three requirements described earlier:
[REARPROP], [FCS_STAY_OFF], and [WIND_SPEED_assumption].
FlightDeckZ is a system that incorporates physics models of the LPC concept
with flight controllers, and a visualization system, to allow for fairly realistic
flight simulation of the LPC vehicle model with experimental controllers.

The first two monitors express requirements that we expect from the control
system of the LPC model, while the last monitor expresses an environmental
property that may be of interest to a pilot during an actual flight (as most
eVToL systems are not designed to take off in high winds). This difference here is
intentional. The first two monitors are likely more useful to a system developer,
and so can likely be removed from use once a stable and trustworthy control

Authoring, Analyzing, and Monitoring Requirements 305

system is in place. The last monitor is something that may be integrated into a
system display on a real aircraft. The status of the monitors is displayed to the
users with a simple window frame, with descriptions of the monitors and their
current status displayed side-by-side (Fig. 5).

6 Lessons Learned

We list below lessons and FRET needs and improvements resulting from the
experience of using FRET in this case study.

In this effort, requirements were written directly in
FRETish based on informal diagrams describing desired behavior, rather than
being translated from an initial natural language description. Thus, we were
interested in understanding whether FRETish provides adequate expressive-
ness and clarity and whether we are able to capture requirements that observe
complex interaction behavior for generating meaningful runtime monitors.

We were able to express in FRETish all the requirements of the control allo-
cation schedule. Writing these requirements directly in FRETish made them
more detailed while avoiding ambiguities; a lot of attention was given to under-
standing their semantics and how small changes in their syntax affect it.

We also found limitations: FRET lacks an enumerated type facility; a work-
around with integer constants was used instead for the lift modes in Table 1.
Also, a condition that enforces the response whenever the condition is true, not
just triggering the response upon the condition becoming true from false, would
have been useful, as discussed in Sect. 4.2.

Usefulness of Tool Assistance in Writing Requirements: Crucial to the require-
ment formulation process were the interactive simulator of FRET and the realiz-
ability checking mechanism that guided the discussion to corner cases, important
sanity checks, and complete requirement sets (see Sect. 4.2).

Formulating correctly the FRETish for state transitions involved some sub-
tlety, but once the FRET templates were devised, they were used to specify
26 out of the 53 LPC requirements. Since state machines are frequently used
in requirements development, we expect that the FRET templates could be
useful to others who wish to formulate complete and realizable state machine
requirements. On the other hand, instead of formulating such requirements
in FRETish, the ability to express requirements in a state-machine notation
directly could be a useful addition to FRET.

Usability of Feedback from Realizability Analysis in the Form of Positive and
Negative Traces, and Minimal Conflicts: In several cases (e.g., the cases men-
tioned in Sect. 4.3 that revealed negative air speed, and in Sect. 4.2 the need for
“stay” requirements for completeness), we needed evidence to understand why
a specification was realizable. This motivated a new feature in JKind and the
FRET analysis portal that computes and displays a satisfying, i.e., positive,
trace showing how the requirements are realizable. We achieved this by using

306 T. Pressburger et al.

the proof produced by realizability checking. More specifically, when a specifi-
cation is proved realizable by the underlying tools, a symbolic fixpoint of “good
system states” is computed. We reuse this fixpoint to compute and present to
the users valid system execution traces of bounded length, that can be seen as
indicative runs of a system that is, by definition, guaranteed to always comply
with the specification. Examples of such generated positive traces were shown
in Tables 2 and 3. Furthermore, we enabled the use of the simulator to interact
with the requirements in context, starting from the satisfying trace (see [25]).

Unrealizable results also contributed to the refinement of the specification.
E.g., note how we allow the vehicle to control the HC variable (i.e., declared
as an output). The fact that it needed to be an output was pointed out by the
realizability analysis: the specification was unrealizable when the variable was
originally declared as an input, because the environment could decide to never
switch to hover control mode. When a set of requirements is unrealizable, it is left
up to the FRET user to puzzle out from a negative trace and experimentation
why the requirements don’t allow a positive trace. In particular, minimal conflicts
can be subsets of requirements that discard necessary requirements, for example,
LIFT_MODE. Further research is needed in the area of providing helpful
counterexamples. We sometimes found it sufficient to find the cause just by
examining which requirements were in the conflict set.

Dealing with Requirement Versions: During realizability analysis, we refined our
requirements multiple times. Thus, we ended up with several different versions
of the same requirements that can be used within different subsets of require-
ments. This motivated a new feature in the FRET analysis portal that allows
the user to easily select which requirement versions should be included in each
realizability check (see [25]). In certain cases, we ended up with logically equiv-
alent requirement versions. We thus think that there should be a capability of
the FRET interface to test the equivalence of requirements, without the user
needing to escape to other tools.

Easy Monitoring: FRETish allows for the easy specification of many complex
and time-based interactions inside a system. For example, in the LPC model,
if one of the lifting rotors fails, the mirrored rotor on the other wing should be
turned off, so that a thrust imbalance does not occur. In FRETish, one could
easily specify a property that says “Upon rotor_1_fail, the vehicle shall within
5 s satisfy rotor_4_power_off”. Such a monitor could then be automatically gen-
erated, and requirements violations could be detected without post-simulation
analysis, or even without the need for manual writing of code that collects and
assesses the state of the system over periods of time.

Monitor Semantics Mismatch: We discovered an issue with FRET-generated
Copilot monitors during the integration and testing process. Due to the fact
that the requirements are turned into pmLTL, the interpretation of each require-
ment is the statement “always in the past, requirement x holds.” What this means
is that at each time step, the monitor is determining if there has ever been a

Authoring, Analyzing, and Monitoring Requirements 307

violation. Hence even if the system returns to a state that is determined to
be safe, the monitor is still considered violated. For example, if the wind ever
goes above 30 knots, then even after the wind calms, the statement “The wind
shall always be below 30 knots” is false, so the monitor stays on. Currently,
a workaround “reset” button restarts the monitors, effectively erasing all past
history, mitigating the issue.

7 Conclusion

This experience report paper showed how certain aspects of a concept Lift-Plus-
Cruise aircraft were captured in requirements written in FRETish and how
realizability analysis was crucial for guiding the evolution of the requirements.
The main requirements engineering challenges that we encountered stemmed
from the iterative process of refining requirements with respect to realizability.
These challenges were not apparent until after the step of analysis was reached.

To answer our main research questions: we were successful in turning informal
descriptions into an analyzable formal model through FRET and subsequently
using this formal model to easily create monitors. To this end, the FRET model
did fulfill its purpose. Additionally, experience with this case study led us to
improve FRET as well as to point to future work such as adding to the expres-
siveness of FRETish and revisiting the semantics of run-time monitoring.

Acknowledgements. We acknowledge Michael Feary, John Kanishige, and Kimber-
lee Shish who explained the vehicle used in this study and provided Fig. 2, and Dim-
itra Giannakopoulou who did an early requirements development. Thanks also to the
anonymous reviewers who provided detailed improvement suggestions. This work was
supported by the Advanced Air Mobility and System Wide Safety projects in the NASA
Aeronautics Mission Directorate’s Airspace Operations and Safety Program. Andreas
Katis and Anastasia Mavridou were supported by contract NASA 80ARC020D0010.

References

1. FRET. https://github.com/NASA-SW-VnV/fret.git
2. Archdeacon, J., Iwai, N., Feary, M.: Aerospace cognitive engineering laboratory

(ACELAB) simulator for electric vertical takeoff and landing (eVTOL) research
and development. In: AIAA Aviation Forum (2020)

3. Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-
redundant flight control system. In: NFM 2015 (2015)

4. Bhatt, D., Ren, H., Murugesan, A., Biatek, J., Varadarajan, S., Shankar, N.:
Requirements-driven model checking and test generation for comprehensive ver-
ification. In: NFM 2022 (2022)

5. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: CAV 2016 (2016)

6. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: Fretting about requirements:
formalised requirements for an aircraft engine controller. In: REFSQ 2022 (2022)

7. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: CAV 2018 (2018)

https://github.com/NASA-SW-VnV/fret.git

308 T. Pressburger et al.

8. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards realizability
checking of contracts using theories. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 173–187. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-17524-9_13

9. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated
formalization of structured natural language requirements. Inf. Softw. Technol.
137, 106590 (2021)

10. Heitmeyer, C.L., Archer, M., Bharadwaj, R., Jeffords, R.D.: Tools for constructing
requirements specifications: the SCR toolset at the age of ten. Int. J. Comput.
Syst. Sci. 20(1), 19–35 (2005)

11. Kanishege, J., Lombaerts, T., Shish, K., Feary, M.: Command and control concepts
for a lift plus cruise electrical vertical takeoff and landing vehicle. In: AIAA Aviation
Forum and Exposition, San Diego, CA, June 2023

12. Katis, A., et al.: Validity-guided synthesis of reactive systems from assume-
guarantee contracts. In: TACAS (2018)

13. Katis, A., Mavridou, A., Giannakopoulou, D., Pressburger, T., Schumann, J.: Cap-
ture, analyze, diagnose: realizability checking of requirements in FRET. In: CAV
2022 (2022)

14. Könighofer, R., Hofferek, G., Bloem, R.: Debugging unrealizable specifications with
model-based diagnosis. In: Haifa Verification Conference (2010)

15. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications: a prac-
tical approach using model-based diagnosis and counterstrategies. Int. J. Softw.
Tools Technol. Transfer 15(5–6), 563–583 (2013)

16. Larraz, D., Tinelli, C.: Realizability checking of contracts with Kind 2 (2022)
17. Letier, E., Heaven, W.: Requirements modelling by synthesis of deontic input-

output automata. In: 2013 35th International Conference on Software Engineering
(ICSE), pp. 592–601. IEEE (2013)

18. Lúcio, L., Rahman, S., bin Abid, S., Mavin, A.: EARS-CTRL: generating con-
trollers for dummies. In: MODELS (Satellite Events), pp. 566–570 (2017)

19. Maoz, S., Ringert, J.O.: Synthesizing a lego forklift controller in gr (1): a case
study. arXiv preprint arXiv:1602.01172 (2016)

20. Mavridou, A., et al.: The ten Lockheed Martin cyber-physical challenges: formal-
ized, analyzed, and explained. In: Proceedings of the 28th IEEE International
Requirements Engineering Conference (2020)

21. Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D., Pressburger, T., Whalen,
M.W.: From partial to global assume-guarantee contracts: compositional realiz-
ability analysis in FRET. In: Formal Methods (2021)

22. Perez, I., Dedden, F., Goodloe, A.: Copilot 3. Technical report NASA/TM 2020-
220587, April 2020

23. Perez, I., Mavridou, A., Pressburger, T., Goodloe, A., Giannakopoulou, D.: Auto-
mated translation of natural language requirements to runtime monitors. In:
TACAS 2022 (2022)

24. Pill, I., et al.: Formal analysis of hardware requirements. In: DAC 2006 (2006)
25. Pressburger, T., Katis, A., Dutle, A., Mavridou, A.: Using FRET to create, ana-

lyze and monitor requirements for a lift plus cruise case study. Technical report
NASA/TM 20220017032 (2023)

26. Silva, C., Johnson, W.R., Solis, E., Patterson, M.D., Antcliff, K.R.: VTOL urban
air mobility concept vehicles for technology development. In: AIAA 2018 (2018)

https://doi.org/10.1007/978-3-319-17524-9_13
https://doi.org/10.1007/978-3-319-17524-9_13
http://arxiv.org/abs/1602.01172

Knowns and Unknowns: An Experience Report
on Discovering Tacit Knowledge of Maritime

Surveyors

Tor Sporsem1(B) , Morten Hatling1, Anastasiia Tkalich1 , and Klaas-Jan Stol1,2

1 SINTEF Digital, 7034 Trondheim, Norway
tor.sporsem@sintef.no

2 University College Cork, Cork, Ireland

Abstract. [Context] Requirements elicitation is an essential activity to ensure
that systems provide the necessary functionality to users, and that they are fit for
purpose. In addition to traditional ‘reductionist’ techniques, the use of observa-
tions and ethnography-style techniques have been proposed to identify require-
ments. [Research Problem] One frequently heard issue with observational tech-
niques is that they are costly to use, as developers who would partake, would
lose considerable development time. Observation also does not guarantee that all
essential requirements are identified, and so luck plays a role. Very few experi-
ence reports exist to evaluate observational techniques in practice, and for organi-
zations it is difficult to assess whether observation is a worthwhile activity, given
its associated cost. [Results] This report presents experiences from DNV, a global
leader providing maritime services who are renewing an information system to
support its expert users. We draw on several data sources, covering insights from
both developers and users. The data were collected through 9 interviews with
users and developers, and over 80 h of observation of prospective users in the
maritime domain. We capture ‘knowns’ and ‘unknowns’ from both developers
and users, and highlight the importance of observational studies. [Contribution]
While observational techniques are costly to use, we conclude that essential infor-
mation is uncovered, which is key for developers to understand system users and
their concerns.

Keywords: User involvement · Expert Knowledge · Requirements
engineering · Tacit Knowledge · Ethnographic Techniques

1 Introduction

“We can know more than we can tell”
—Polanyi [17]

“We’re not good at knowing what we know”
—Ken Jennings, Jeopardy! champion1 [14]

1 Jennings holds the record of the longest streak of wins of the popular TV game show ‘Jeop-
ardy!’

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 309–323, 2023.
https://doi.org/10.1007/978-3-031-29786-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_22&domain=pdf
http://orcid.org/0000-0002-5230-7480
http://orcid.org/0000-0001-7391-4194
http://orcid.org/0000-0002-1038-5050
https://doi.org/10.1007/978-3-031-29786-1_22

310 T. Sporsem et al.

Organizations in all domains rely on software solutions to support their employees
in achieving their core business goals. Automation to support professionals and experts
in their manual jobs can be traced back to the early days of computing [12,21]. Initially,
development processes for software were modeled after traditional engineering cycles,
focusing on problem formulation and analysis, systematically developing systems based
on requirements that could be identified.

Many of the early software development methods sought to provide support to sys-
tems developers in structurally and systematically design and implement systems—the
so-called structured approaches; specific practices included structured analysis, struc-
tured design, data-driven design, and structured coding [5,12]. A key characteristic of
these practices is that they all focus on that what can be observed and articulated; fur-
ther, they take a ‘reductionist’ approach in that these methods consider only technical
entities such as components, control structures, and data flows [5], ignoring what we
could label “system-in-action” requirements that capture the subtleties of how users
actually use systems.

In recognition of the importance of capturing and managing the right system require-
ments, the Requirements Engineering (RE) discipline emerged [15], and has been
concerned with identifying, modeling, communicating, and documenting requirements
[16]. Despite a very rich and mature RE literature today, RE remains a major chal-
lenge because systems are usually developed by people other than the intended users.
Software systems that fail to meet the needs of expert users may threaten those users’
ability to do their job and, indirectly, the core business activities of the organization. A
key problem is the knowledge gap that exists between the analyst/developer, and the
expert user who possesses a high level of expertise. Understanding how this gap can be
closed has been a longstanding goal of the RE discipline.

As one of the opening quotes suggests, Polanyi [17] argued that much human knowl-
edge acquired by highly skilled experts through experience is impossible to articulate.
In seeking to understand whether and how expertise can be articulated, several scholars
have invoked the term ‘tacit knowledge’ [6]. Gervasi et al. [7] drew on a notable 2002
press briefing of the late Donald Rumsfeld, Secretary of Defense during the U.S. inva-
sion of Afghanistan and Iraq. Rumsfeld argued there are different types of knowledge,
or ‘knowns’: known knowns, known unknowns, and unknown unknowns.2 Gervasi et al.
[7] suggested that there is a fourth type of knowledge:

“An unknown known is knowledge that a customer holds but which they withhold
from the analyst.”

We note that this ‘withholding’ is likely to be unintentional. Tacit knowledge, then, fits
that definition, i.e. tacit knowledge is an unknown known [7]. Table 1 presents the four
types of knowns, considering two important roles in RE, as Gervasi et al. [7] suggested:
the system analyst/developer, and the user. Some knowledge is held by both developers
and users (known knowns), whereas other knowledge is known to only one but not the

2 These different types of ‘knowns’ map very well to Phillip Armour’s “Orders of Ignorance”
published two years prior, in 2000 [1]. This might be a rare unintended instance where SE
research has had an impact on global political rhetoric.

Discovering Tacit Knowledge of Maritime Surveyors 311

other, e.g. unknown knowns represent knowledge held by users, whether they are aware
of it or not, but unknown to developers.

Table 1. Developers and users’ knowns and unknowns (based on Gervasi et al. [7] and Sutcliffe
and Sawyer [20])

Analysts and Developers

Known to developers Unknown to developers

Users Known to users Known Knowns: relevant knowledge
that users know and that can be
articulated for software developers

Unknown Knowns: relevant
knowledge that users know (whether
consciously or without realizing it),
but which is not yet articulated and
thus not known yet to software
developers

Unknown to users Known Unknowns: relevant
information that developers are aware
of (know), but which they don’t know
yet. Users may be unaware of this
knowledge, or have forgotten it

Unknown Unknowns: potentially
relevant information, but both
developer and user are unaware that it
is missing. Developers lack relevant
domain knowledge, and users are
unaware of the knowledge that they
rely on

The RE field has discussed different requirements elicitation techniques at length
[4,8,20] and it lies beyond the scope of this paper to present a full discussion. Com-
monly discussed techniques are interviews, workshops, scenarios, and observation
[4,8,20,22]. Observation is often mentioned as a part of conducting ethnographic stud-
ies; several papers have discussed ethnography or observational approaches to sup-
port requirements elicitation and design [9,11,19]. Early studies proposing to integrate
ethnography for RE recognized that traditional techniques “do not take into account
actual work practices” [19]. While there has been some fruitful discussion and analy-
sis of observational methods to uncover ‘unknowns,’ a few issues seem to remain. For
example, ethnographically-informed or observational methods for RE have been sug-
gested to require considerable resources, time in particular, making them less attractive.
Further, other issues associated with ethnographic research is that it may suffer from
ambiguous interpretation [20], a lack of technical competence of ethnographers [3], and
the serendipitous nature of identifying new requirements through ethnography [20], i.e.
the reliance on luck. Finally, the number of studies that evaluate the use of observational
approaches including ethnography for requirements engineering has remained limited,
despite several important contributions in the 1990s and early 2000s [3,9–11]. One
might wonder, given the drawbacks listed above, whether organizations should bother
with observational approaches. A lack of experience reports on the use of observational
or ethnographic techniques hinders organizations in deciding whether this approach is
worth the considerable cost. There seems to be an acceptance that there is no advantage
in any specific technique over the use of structured interviews [8,20], and so an open
question is: what value does observation offer in a requirements engineering context?

312 T. Sporsem et al.

Thus, the goal of this experience report is to highlight the importance of observation
to identify unknown knowns and unknowns, and report lessons learned from the field,
in a domain that hitherto has not been studied in this context. Several of the seminal
papers in the software engineering and requirements engineering literature reported on
an air traffic control system, which represents a very specific setting whereby its users
operate in a fixed location. This experience report focuses on surveyors who inspect
ships for certification, necessary to allow them to operate in international waters. Sur-
veyors, unlike air traffic controllers, operate in a different setting every single day. This
makes characterizing these actors’ work environment more challenging as each ship is
unique and thus it is important to recognize the varying work settings of these experts.
We illustrate how developers, who had used traditional requirements elicitation tech-
niques such as interviews, were struggling to understand these expert users, and indeed
had not gained important insights that we classified as unknown knowns and unknown
unknowns (see Table 1). We conclude by juxtaposing our findings with prior literature,
adding clarifications and commentary, and identify some implications for practice.

2 Methods

This experience report draws on data collected from different sources at DNV, a major
service provider in the maritime sector. As researchers of the SINTEF Digital Process
Innovation group, we are involved in an ongoing project with DNV focused on Digital
Transformation, which provided the backdrop of this investigation. In the remainder of
this section we describe DNV and procedures for data collection and analysis.

2.1 Description of DNV

DNV is a leading service provider in the maritime sector, with about 3,700 employees
operating globally. DNV’s core business is compliance verification of vessels (ships of
any size); successful verification leads to issuing of necessary certificates that vessels
require in order to secure marine insurance and sail and operate in international waters.
Certificates are normally issued annually, with a more thorough five-year survey. Ves-
sels are costly to run; therefore, they are continuously in operation. Surveys are typi-
cally conducted during visits to ports or shipyards, when vessels load or unload cargo,
or undergo maintenance. Every survey job is tailored to the unique characteristics of a
vessel, and its operation plan in order to reduce the interruption to normal operations.
This means that survey procedures are often broken down into parts, with each part of
the survey potentially being conducted in a different port.

DNV is currently modernizing its survey support system, which surveyors use to
conduct and manage surveys. The system is used for planning survey jobs, document
compliance, reporting of ‘findings,’ (that is, issues that require fixing before compli-
ance can be signed off), looking up a vessel’s history, and issuing of certificates. The
current desktop version for Microsoft Windows was released in 2004, and at the time
of data collection, DNV was developing a new web-based solution to allow contin-
uous development of new features. Development is organized as an in-house project
with a release date when the new solution goes live and the old system shuts down.

Discovering Tacit Knowledge of Maritime Surveyors 313

DNV employs approximately 1,000 surveyors globally who are the primary users. This
group of users tend to dislike new digital tools – or in the words of one surveyor, “we
don’t like change.” DNV management was concerned that if the new system gained
a bad reputation, the cost would rise dramatically, possibly outweighing the benefits
of the new system, requiring significant resources to overcome resistance in adoption.
In other words, management put a premium on developing a system that pleases its
intended users.

2.2 Data Collection and Analysis Procedures

We collected data during a nine-month period; data collection and analysis were inter-
leaved, and followed procedures described by Seaman [18]. The data collection activi-
ties included semi-structured interviews and several site visits for observation of survey-
ors at work. The first site visit for observation was treated as a pilot study, and from this
we gained valuable insights into how this group of users interacts with software tech-
nology and a general understanding of their role; based on this we designed observation
guides and semi-structured interview guides.

Interviews can be a valuable source of information as it allows in-depth conversation
with experts, but it is only one of many potential methods to collect data in field studies
[13]. Interviews fall in a category of methods that Lethbridge et al. have labeled inquis-
itive techniques [13], in that a researcher must actively engage with interviewees to get
information from them. A second category is observational techniques, which includes
observation of professionals. Both types of techniques have benefits and drawbacks;
interview data may be less accurate than observational data, but observational tech-
niques may introduce the Hawthorne effect, whereby professionals’ processes change
when they are observed [13].

A total of nine interviews were conducted: four software developers, one manager,
one implementation manager, and three surveyors. The focus of these interviews was
to develop an understanding of the purpose of the new system and how developers
elicited user requirements. All interviews were transcribed, resulting in 105 pages of
text. Following the interviews, we conducted a total of seven observations. We observed
three more surveyors for two days each, and three surveyors for one day each. Three of
the surveyors were situated in Norway and four in the Netherlands.

The first two authors conducted observations of seven surveyors. These onsite
activities were organized in collaboration with DNV’s central scheduler who assigns
jobs to surveyors. The site visits involved shadowing the surveyors for the full day;
this included accompanying surveyors during inspection of vessels, including crawling
through narrow storage tanks, climbing crane towers, as well as driving for hours to
reach remote ports during which surveyors could also have phone calls with colleagues,
and having lunch together. Our impression is that the surveyors appreciated the oppor-
tunity to show their work practices and expressed themselves freely. The researchers
conducting observations were dressed similarly to crew and surveyors, including all
the required Personal Protective Equipment (PPE) (including safety helmet, ear muffs,
safety shoes, etc.). In a way, we were more like apprentices than researchers. Research
notes and pictures were constantly captured over the course of data collection, and

314 T. Sporsem et al.

reflections were written immediately afterwards, resulting in 59 pages of notes pro-
duced and about 100 photographs of surveyors in action (see Fig. 1).

The first and second authors jointly analyzed the data and immersed themselves in
the material. A word processor was used for both open-ended coding and memoing [18].
Examples of labels include:

– “use of phone calls, not chat, to maximize bandwidth of communication and realtime
feedback”

– “surroundings force surveyors to take breaks during their work day”

These two labels were grouped in a theme “adapting to surroundings.” After we com-
pleted the data analysis, we used member checking, a procedure to assess the validity
of our findings by presenting them in a workshop involving surveyors and DNV man-
agement, and adjust any misapprehensions. Overall, their response was confirmative.

3 Findings

This section presents the key findings. We first discuss requirements elicitation practices
at DNV; the remainder of the section is organized using the framework presented in
Table 1; a summary of findings is presented in Table 2.

It should be clear that the ‘users’ in this context are domain experts, namely, sur-
veyors of the DNV organization, who have very extensive experience; the term ‘users’
does not therefore apply to other types of users.

We do not discuss Known Knowns in further detail, because that is knowledge
shared among developers and surveyors alike. One example of this is that surveyors
preferred to keep the new system as similar to the old one, and developers were aware
of this and tried to accommodate this.

3.1 Requirements Elicitation at DNV

The team we interacted with did not have any dedicated requirement engineers; require-
ments therefore were elicited by the developers. Development teams relied mainly on
two methods to capture the surveyors’ requirements.

1. Workshop. A three-day workshop with a user representatives group of 50 surveyors
face to face in the early phases to gather as much information as possible about
how surveyors work and interact with technology. One developer explained their
focus on the gap between current features and what surveyors need and expect: “We
were discussing current solutions and what they [the surveyors] miss.” Following
the workshop, a UX-designer created user stories based on the results.

2. User tests. Variants of one-on-one test sessions virtually on Microsoft Teams to test
usability and functionality developed from the user stories gathered in the workshop.
One surveyor in the user representative group explained:

“I share my screen and they sit and take notes along the way or ask [ques-
tions]. We did tests where I kind of got instructions on what to do (...) and
tests to check if I intuitively could find what to do.”

Discovering Tacit Knowledge of Maritime Surveyors 315

Fig. 1. From left to right: planning the survey, photographing issues, surveying in difficult envi-
ronments, paper artifacts remain important, and one of the researchers on-site. No photographs
could be taken on tankers as we had no explosive-proof camera.

These tests were facilitated by the UX-designer and ranged from strictly orches-
trated, to tests where the user was given a task and encouraged to explore the system
on their own to solve it. Tests were conducted every 2–3 months with the same
selection of surveyors as the one attending the first workshop.

316 T. Sporsem et al.

Table 2. Summary of Findings

Known to developers Unknown to developers

Known to users Known Knowns:
– Surveyors preferred to keep the new
software as similar as possible to the
old one, which developers knew and
tried to accommodate. (Not discussed
in the findings section, because this is
unproblematic knowledge.)

Unknown Knowns:
– Surveyors rely on “gut feeling” and
“on the go” decision making.
– Surveyors prefer to discuss issues
over the phone with colleagues, instead
of in writing (e.g. chat or email),
ignoring the ‘chat’ function that was
designed for this.
– Surveyors spend much time
interacting with people onboard of
vessels, which is essential for a
successful survey, but is hard if not
impossible to capture.

Unknown to users Known Unknowns:
– Developers frustrated with an inabil-
ity to test their assumptions.
– Developers lacked domain knowl-
edge and realized they were missing
information when merely talking to sur-
veyors.
– Developers envisioned the user
according to how they understood
them from the workshop and
interviews, filling in blanks using their
own logic rather than by asking the
surveyor, and their experience might
be limited.

Unknown Unknowns:
– Divergence between observational
and interview data: surveyors simpli-
fied, generalized, and abstracted when
talking about their job, but reality is dif-
ferent.
– Surveyors must constantly adapt their
workflow to changing circumstances;
the survey process is not straightfor-
ward and is tailored to the context.
– The application to report findings
(issues that require fixing) technically
works, but is not used as originally
conceived by designers due to
inconvenient menu navigation and
illogical object naming.

3.2 Known Unknowns: What Developers Know They Don’t Know

Developers were aware that they did not know certain aspects. To better develop and
gain insights into these known gaps in their knowledge (‘Known unknowns’) devel-
opers had continued access to the user representative group during development. This
proved useful when developers sought to ask for clarifications while reading user sto-
ries and developing features. One of the developers explained that: “Some assumptions
that we’ve had before proved slightly different.”

Developers described this combination of observation during user tests on the one
hand, and the ability to contact surveyors directly for follow-up questions on the other
hand, as ‘ground-breaking’ because they had not had such close contact with users
before. At the same time, they sought to acquire an even deeper insight into the user’s
context and observe surveyors use their software in the real world, to understand “How
does this [software] relate to how they actually work?” Developers were aware they
lacked this understanding, and expressed a preference to visit the world of surveyors

Discovering Tacit Knowledge of Maritime Surveyors 317

and conduct observations themselves. One developer shared that: “I have not been on
a tanker before, so I have no idea what things really look like.”

Developers argued they could not obtain all the essential information about user
needs due to a lack of basic domain knowledge of surveying. One of the developers
recognized that context information was crucial to gaining a deeper understanding of
the survey process in practice:

“I would like to get on a boat and see what the actual work process looks like [...]
there is a lot they [surveyors] cannot include when they explain it in the office,
versus when you are actually out physically with them.”

At the same time, observing a surveyor in real life is not without challenges, not
least of which include the cost associated with site visits as well as the purchasing of
prerequisite PPE, and the cost associated with lost developer productivity for the time
they travel. One developer highlighted:

“We have always requested that we visit a ship so that we can actually connect
the dots between our domain knowledge versus what we actually see in practice.”

Developers were frustrated that some of their work had to rely on assumptions that
were impossible to test through traditional methods such as workshops and interviews.
It seemed there was a shared recognition among the developers that if they could not
test these assumptions, the software would not fulfill its potential.

3.3 Unknown Knowns: What Developers Don’t Know, but Users Do

There was also a category of knowledge that developers were not aware of, but the sur-
veyors were. All surveyors we shadowed were highly experienced in their role. When
boarding a vessel, they would quickly gain a ‘feeling’ of the vessel’s condition, as they
had learned to recognize subtle clues of technical problems (“findings”) through obser-
vations and conversations after years of experience. Subtle clues include the freshness
of the paint, the general tidiness of the deck, the condition of the lights, and signs of
stress among the vessel’s captain and crew. By piecing together these clues, survey-
ors adapted the survey job to uncover the most crucial findings. For example, one of
the surveyors we followed decided to check all so-called ex-lights (lights certified for
explosive environments) after having been only minutes on board a vessel. The surveyor
then continued to make numerous other findings. When we asked why he decided to go
straight for the lights, he said that it was a combination of experience and pieces of
information he gathered when boarding the vessel, concluding: “I get this gut feeling.”
He did not need to spend time analyzing what to focus on in his survey but intuitively
made this decision “on the go”—the checklist or survey support system did not prompt
the surveyor. This was knowledge he found impossible to describe to developers, argu-
ing: “You can only learn it through years of experience.” We made similar observations
with other surveyors, all of whom shared the same explanation.

318 T. Sporsem et al.

Although surveyors tried to explain this type of knowledge during interviews, it was
not until we observed this ourselves, while attending surveys on vessels, that we gained
an adequate understanding of how such knowledge impacted the way the survey was
conducted. It had remained unknown to us as researchers and to the developers.

Because the surveyors struggled to communicate many critical aspects of their work
to others (non-surveyors), they felt they were unable to articulate their needs clearly to
developers. Previously, DNV had digitalized the old paper-based checklists to relieve
surveyors of hours at the printer. Despite knowing most checklists by heart and rarely
printing them, surveyors welcomed this improved accessibility. However, whereas the
old checklists automatically marked newly added check items in red, this feature disap-
peared with the introduction of a new system; this forced surveyors to search for this
information that was now ‘hidden’ within hierarchies of application menus. Surveyors
agreed that a lack of understanding of surveyor work among software developers was
the reason for this shortcoming.

Another crucial part of surveying, that remained completely unknown to developers,
is how surveyors establish relations with the captain and crew upon entering a vessel.
This is important because both captain and crew act as ‘gatekeepers’ as well as facili-
tators for the survey. Good working relations results in a smoother survey because the
captain and crew willingly support the surveyor in accessing the vessel’s different parts,
i.e. by opening hatches, stopping maintenance work, clearing gas tanks, etc. They are
powerful allies because they can provide flexibility to the surveyor. Surveyors and crew
constantly negotiate which survey activities are convenient based on the current situa-
tion on the vessel. For instance, when a surveyor planned to inspect tanks, a cooperative
relationship with the Chief Officer gained him increased access and guidance during the
survey.

Establishing good relations happens in social situations. Typically, when surveyors
board a vessel they go straight to the bridge and meet the captain and First Officer.
Coffee is offered, sometimes cakes, and usually a polite conversation ensues about for
example the vessel’s history and mutual acquaintances. They then move to planning
the day and negotiating what surveyor activities are possible considering the vessel’s
operations that day. Drawings of the vessel and survey-checklists are commonly central
artifacts for achieving a shared vision amongst them, because they are able to show and
tell, pointing to details as a basis for discussions (see Fig. 1). These artefacts are found
either on the surveyor’s computer screen or printed by the captain to make it easier for
them to gather around.

Social situations, like these, remain unknown to developers because surveyors per-
ceive this to be an informal part of the survey process, and as irrelevant to developers:

“I spend half my time going around the vessel talking to people. That human part
is not very well captured [in work instructions, procedures, etc.].”

This becomes a challenge because developers do not know that the software they
develop is a critical artefact in establishing good relations between surveyors and
captains.

Discovering Tacit Knowledge of Maritime Surveyors 319

Another example of unknown social interactions occurs when surveyors talk on the
phone. Surveyors are dealing with problem solving in complex surroundings and often
need to discuss their situation with colleague surveyors. In a time-pressed world they
reach out for colleagues because they are able to explain their problem and surroundings
within minutes, let their colleagues ask questions, and interpret the situation together
to agree on how to proceed. Such conversations contain valuable and almost-instant
information about problem-solving that DNV attempted to capture by introducing a chat
function. By capturing these conversations through chats in the application, knowledge
could be saved and processed to benefit other surveyors experiencing similar problems.
However, surveyors only used the chat for straightforward and simple issues, leaving
the more complicated issues for phone conversations, meaning the most valuable and
interesting conversations were never captured. One surveyor argued that:

“It [a phone call] creates fewer misunderstandings, less dissatisfaction, more
understanding and makes it easier to reach an agreement. You don’t waste time
writing e-mails”

We observed such conversations between surveyors and actors like captains, engineers,
managers, superintendents, ship owners, authorities, and colleague surveyors. Charac-
teristics of such phone calls remained unknown and indeed invisible to developers.

These were some examples of critical pieces of expert knowledge about surveyors’
daily jobs, constraints and requirements that developers simply were not aware of, and
that surveyors struggled to articulate during requirements elicitation.

3.4 Unknown Unknowns: What Neither Developers nor Users Know

Finally, there was a category of knowledge that neither developers nor the surveyors
were aware of, the unknown unknowns. The surveyors’ workflow was highly dependent
on, and tailored to a complex context with constantly changing circumstances onboard
the vessels. This was an important issue for developers to understand, yet they were not
aware of this, and nor were surveyors readily aware of this as they described their work
in interviews. For example, surveyors were forced to take short spontaneous breaks
caused by changing circumstances on deck. On one occasion, they had to wait for a
crew performing gas measurements before the surveyor could enter a tank—strict pro-
tocols are in place before people may enter certain hazardous areas of a vessel. The
loading and unloading of cargo also affected the survey activities that could be per-
formed; bunkering (refuelling of a vessel) could also limit certain activities, such as a
black-out test that tests back-up generators. Surveyors would use these breaks to cap-
ture findings. Although surveyors were expected to use the application to do this, we
observed that this involved large numbers of clicks and taps when navigating menus to
register findings. Surveyors found this too cumbersome, because breaks were usually
short and unpredictable. In addition, several surveyors found it challenging to locate the
correct ‘object’ in the application because their naming did not always make sense to
them. Therefore, they avoided using the application during inspections and instead pre-
ferred to register their findings manually, for example by taking photographs of issues,
or handwritten notes.

320 T. Sporsem et al.

Although the application seemed to be an excellent digitalization effort in theory,
it failed to support the experts in practice because it was incompatible with how they
performed their job in a complex and unpredictable environment. The surveyors per-
ceived that the system failed because their context was too complex to describe all of its
aspects to software developers. Interestingly, when we compared our observational data
and interview data, we discovered significant divergences in how surveyors said they
worked and how they actually worked. During interviews, surveyors would generalize
and simplify how they worked, leaving out details and abstracting away aspects that
are hard to comprehend without field experience. During observation, however, they
referred to situations they participated in as a starting point for more detailed explana-
tions. They were not able to translate their expert needs to software requirements. They
acknowledged that these requirements remained unknown to them and that developers
would benefit by making observations in the real world. One of the surveyors proposed
that “They [developers] have to come out here and see for themselves.”

In sum, both developers and surveyors recognized the need for developers to
observe the world of surveyors to better understand the needs of this group of expert
users.

4 Discussion and Conclusion

Most prior work in the software engineering domain was conducted by a relatively
limited number of authors, detailed many insights from a select number of case studies,
in particular studies of air traffic controllers [10]. Several other studies are situated in
the HCI and CSCW communities in the 1990s and early 2000s, recording lessons for
designing interactive systems that became increasingly popular in the 1990s [2].

In this paper we report a number of insights (see Table 3). For example, whereas
prior literature has suggested the high cost of ethnographic or observational studies
might preclude organizations from using these strategies, we would argue that in some
domains the gap between developers and users is simply too large to bridge. Even a few
days of observing surveyors at work provided extensive insights that could have saved
many hours of developer time. It is important at this point to distinguish between ‘obser-
vation’ and ‘ethnography’; the former being a technique that we focused on primarily,
whereas the latter is a more encompassing strategy that would take far more time.

A second issue with observation is that it depends on serendipity and ‘lucky’ cir-
cumstances that would lead to identifying new requirements. While we agree this is an
issue in identifying requirements, it is less of an issue to understanding the nature, con-
text, and constraints of an expert’s daily job. We argue this is an important distinction
to keep in mind when planning site visits for developers or requirement engineers; the
goal of observation then becomes one of “walking in the user’s shoes,” to understand
the system-in-action context before attempting to capture requirements.

Analysts and developers are trained professionals who look at systems through a
lens of the affordances that technologies offer, but this too has a reductionist ‘smell’:
looking at technologies and how they “map” to possibilities, rather than user prefer-
ences. It is possible, of course, to add a chat function that seeks to capture potentially
valuable conversations—but this ignores users’ preference to not use system features,
but use simple means such as a phone for a direct and possibly private conversation.

Discovering Tacit Knowledge of Maritime Surveyors 321

Table 3. Contributions and Implications

Insights from prior literature Findings of this Study Implications for Practice

Observation and ethnography are
resource-intensive activities.
Early scholars proposed ‘quick
and dirty’ approaches” [9]

The gap between developers and
users may be too large to bridge;
observing surveyors even for a
few days provided valuable
insights that are difficult to
articulate

The cost associated with letting
developers go into the field for
even a week may well be worth
it, potentially improving the
quality of requirements analysis

Observation and ethnography
depend on ‘luck’ and serendipity
to identify requirements [20].

Observing expert surveyors at
work for even a few days
provided deep insights into the
constraints and work practices

Observation is not only about
identifying requirements and
features, rather, it can be
valuable for developers to
understand the real-world
context and constraints (see
Fig. 1)

Integrating ethnographic
observations into structured
methods of requirements
analysis is very challenging [19].
The reductionist character of RE
(focusing on components, data
flows, processes) is not
compatible with ethnographic
inquiry [3].

Surveyors prefer ad hoc
communication outside the
system’s functionality (rather
than built-in features e.g. chat).
The social interactions and
goodwill between surveyor and
captain/crew are essential for a
successful survey, which cannot
be captured in system features.

Rather than seeking ways to
integrate observational findings
into requirements analysis,
consider system boundaries and
develop a good understanding of
the social context where systems
are implemented

Experts find it difficult to
articulate their expertise during
requirements analysis [19].
Ethnography recognizes work
activities as they are actually
conducted, rather than some
idealized version of it [10]

Surveyors frequently rely on
‘gut’ instincts developed over
years of experience. Surveyors
are often assigned jobs on short
notice, and have to adjust
surveys based on continuously
changing circumstances

Not all work practices can be
digitalized. The valuable
experience and gut instincts
cannot be replaced with a rigid
workflow. Develop systems that
empower experts, rather than
aiming to digitalize existing
workflows

Finally, experts are known to experience difficulty articulating their knowledge, cer-
tainly when this includes dependency on their gut instincts that developed over years.
No guidelines, handbook, or IT system can replace this. This leads us to argue that, per-
haps, not all work practices can (and should) be digitalized. In a way, we are touching
upon the boundary of a current popular trend in the IT industry, namely a search to
digitalize everything. While we do not deny that software systems can greatly improve
our lives and productivity, care should be taken to understand how software solutions
can support our work practices rather than replace them.

In conclusion, software systems are designed for expert users, but in some domains
these experts have very extensive tacit knowledge. Drawing on previous insights on tacit
knowledge, we reported experiences with some of the issues in a domain where chang-
ing circumstances, users’ ‘gut instincts’ and extensive experience, and physically chal-
lenging environments are important issues when seeking to identify unknown knowns
and unknowns.

322 T. Sporsem et al.

Acknowledgements. We thank the participants of this research for sharing their insights, and
the surveyors whom we observed for their patience and insights. We are grateful to DNV for
funding this research together with The Norwegian Research Council (grant number: 309631).
For the purpose of Open Access, the authors have applied a CC BY public copyright licence to
any Author Accepted Manuscript version arising from this submission.

References

1. Armour, P.G.: The five orders of ignorance. Commun. ACM 43(10), 17–20 (2000)
2. Coad, P., Yourdon, E.: Object-Oriented Analysis. Prentice-Hall, Inc. (1990)
3. Crabtree, A., Rodden, T.: Ethnography and design? In: International Workshop on Interpre-

tive Approaches to Information Systems and Computing Research (2002)
4. Davis, A., Dieste, O., Hickey, A., Juristo, N., Moreno, A.M.: Effectiveness of requirements

elicitation techniques: empirical results derived from a systematic review. In: 14th IEEE
International Requirements Engineering Conference, RE 2006, pp. 179–188. IEEE (2006)

5. De Marco, T.: Concise notes on software engineering. Yourdon Inc. (1979)
6. Gacitúa, R., et al.: Making tacit requirements explicit. In: 2nd International Workshop on

Managing Requirements Knowledge, pp. 40–44 (2009)
7. Gervasi, V., et al.: Unpacking tacit knowledge for requirements engineering. In: Maalej,

W., Thurimella, A. (eds.) Managing Requirements Knowledge. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-34419-0_2

8. Hickey, A.M., Davis, A.M.: Elicitation technique selection: how do experts do it? In: Pro-
ceedings of the 11th IEEE International Requirements Engineering Conference, pp. 169–178
(2003)

9. Hughes, J., O’Brien, J., Rodden, T., Rouncefield, M., Sommerville, I.: Presenting ethnogra-
phy in the requirements process. In: Proceedings of 1995 IEEE International Symposium on
Requirements Engineering, RE 1995, pp. 27–34. IEEE (1995)

10. Hughes, J.A.: Ethnography, plans and software engineering. In: IEE Colloquium on CSCW
and the Software Process. IET (1995)

11. Hughes, J.A., Randall, D., Shapiro, D.: Faltering from ethnography to design. In: Proceed-
ings of the 1992 ACM Conference on Computer-Supported Cooperative Work, pp. 115–122
(1992)

12. Jensen, R.W., Tonies, C.C.: Software Engineering. Prentice-Hall (1979)
13. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection tech-

niques for software field studies. Empir. Softw. Eng. 10, 311–341 (2005)
14. Levitt, S.: Episode 4. Ken Jennings: “Don’t neglect the thing that makes you weird”. People

I (mostly) Admire. Podcast, 3 October 2020
15. Mead, N.R.: A history of the international requirements engineering conference (RE) RE@

21. In: 21st IEEE International Requirements Engineering Conference, pp. 21–221 (2013)
16. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile software develop-

ment. In: 2003 Proceedings of the 12th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises. IEEE Computer Society (2003)

17. Polanyi, M.: The tacit dimension. In: Knowledge in Organizations, pp. 135–146. Routledge
(2009)

18. Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE Trans.
Softw. Eng. 25(4), 557–572 (1999)

19. Sommerville, I., Rodden, T., Sawyer, P., Bentley, R., Twidale, M.: Integrating ethnography
into the requirements engineering process. In: 1993 Proceedings of the IEEE International
Symposium on Requirements Engineering, pp. 165–173. IEEE (1993)

https://doi.org/10.1007/978-3-642-34419-0_2

Discovering Tacit Knowledge of Maritime Surveyors 323

20. Sutcliffe, A., Sawyer, P.: Requirements elicitation: towards the unknown unknowns. In: 21st
IEEE International Requirements Engineering Conference (RE), pp. 92–104 (2013)

21. Tracy, K.W.: Software: A Technical History. ACM (2021)
22. Zachos, K., Maiden, N., Tosar, A.: Rich-media scenarios for discovering requirements. IEEE

Softw. 22(5), 89–97 (2005)

Feel It, Code It: Emotional Goal
Modelling for Gender-Inclusive Design

Diane Hassett1(B), Amel Bennaceur2, and Bashar Nuseibeh1,2

1 Lero, University of Limerick, Limerick, Ireland
Diane.Hassett@ul.ie

2 The Open University, Milton Keynes, UK

Abstract. Context and motivation: Organisational values such as
inclusion are often explicit, providing a common language to guide
behaviour and motivate employees. Personal values are often less explicit
but do guide individuals’ decisions, and when challenged they generate
an emotional response. However, understanding organisational values and
linking them to implicit personal values of employees can be challenging.

Question/problem: In this paper, we investigate the use of emotional
goal models to act as a link between organisational and personal values.

Principal ideas/result: We argue that when designing processes and
systems for enacting organisational values, requirements engineers must
consider the diverse personal values of the employees. We completed a case
study within a multi-national organisation and identified pain points on
career journeys which amplify the disparity of experience between men
and women. We applied emotional goal modelling to elicit requirements for
inclusive processes. We suggest that emotional goals can serve as a proxy
for personal values and can support the formulation of requirements for
designing processes cognizant of the organisational value of inclusion.

Contribution: Our empirical evaluation suggests that the modelling
of emotional goals can support the operationalisation of values as require-
ments for gender-inclusive organisational processes and systems.

Keywords: Emotional Goal Modelling · Inclusive Design · Values

1 Introduction

Organisational values (such as honesty, respect and diversity) are usually explicit
and documented. Personal values are often implicit and represent individuals’
beliefs, reflecting what is important and serving as a guide for life choices [23].
When organisational and employees’ personal values are aligned they make for
positive work attitudes [22]. When activated, values become infused with feel-
ings, which can be seen in emotional responses [23]. Lack of alignment between
the values of organisations and the values of their employees can result in con-
flicts [12].

Many organisations, especially in male-dominated professions such as engi-
neering and software development, advocate for greater gender diversity in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 324–336, 2023.
https://doi.org/10.1007/978-3-031-29786-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-29786-1_23

Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design 325

workplace. There is an increasing emphasis on methods that identify gender-
inclusivity biases within software (such as GenderMag [29]), but the socio-
technical environment in which software is created is equally important [14].
In this paper we propose that understanding employees’ values can help organi-
sations design processes which reflect their values of gender-inclusivity.

Peoples’ emotions play a significant role in the user acceptance of innova-
tion [5]. Value-based Requirements Engineering (VBRE) uses emotions as cues
to stakeholders’ reactions arising from personal values to support communication
processes [28]. However there is a lack of methods which use emotions to repre-
sent personal values as requirements in the design of processes and systems [17].

Emotional Goal Models (EGMs) build on requirements modelling to con-
struct people-oriented models which show how users want to feel [15]. They
have been successfully used to guide design in domains such as health [15] and
homelessness [3]. In this paper, we focus on organisational processes and build
on EGMs for identifying emotional goals as requirements for gender-inclusive
processes. We investigate the following research questions:

RQ1: Can emotional goal models serve as requirements for design of a (soft-
ware) system that promotes inclusion within the organisation?

RQ2: Can emotional goals contribute to a method for representing personal
values as requirements?

To address those questions, we conducted an empirical study to understand
the emotional experience of men and women in the organisation and extract
the broad patterns that are important and relevant for the conception, design,
and development of gender-inclusive processes. Mapping the experience of men
and women during their career highlighted disparities at onboarding, develop-
ment, and promotion. To translate employees’ experience into tangible goal-
driven requirements, we used EGMs to represent the functional, quality and
emotional goals of employees during onboarding processes. We then evaluated
the emotional goals generated and their link to employees’ personal values. The
contributions of this paper are twofold:

– Applying emotional goal modelling to design gender-inclusive processes. We
propose a novel application of EGMs to the design of organisational pro-
cesses that reflect emotional goals of men and women who experience those
organisational processes in differing ways.

– Evaluation of emotional goals for their representation of personal values
within goal modelling. We extend EGM to propose a method of eliciting and
reflecting on emotional goals relationship to personal values. We reflect on
the use of emotional goals to operationalise value requirements for the design
and development of processes and systems that align organisational values
and the personal values of its employees in the context of gender-inclusivity.

The remainder of the paper is structured as follows. Section 2 reviews related
work. Section 3 presents the empirical study for mapping employees experience.
Section 4 explains how we leverage EGMs to identify gender-inclusive require-
ments. Section 5 discusses the findings, lessons learned, and implications for
requirements engineering (RE). Section 6 concludes the paper.

326 D. Hassett et al.

2 Background and Related Work

“Values are individual representation of societal goals. As elusive societal goals
change, individuals’ values will sometimes lead and sometimes reflect this
change” [10]. Schwartz’s theory of basic values is the most commonly applied
within software engineering [24]. It identifies 10 value categories described by
conceptual definitions in terms of motivational goals.

Goal modelling has emerged as a promising technique to operationalise values
in software engineering [18,21]. ‘Soft goals’ have been used to represent non
functional requirements such as trust in agent-oriented models [31]. Goal models
can also be used to understand value trade-offs based on software features [21].

However, these approaches do not address the values of the processes sur-
rounding the creation of software. In this paper, we build on Schwartz’s theory
of values [24] to represent personal values within organisational processes for
onboarding.

To operationalise values such as inclusion, organisations implement support
structures such as mentoring, networking and senior leadership sponsorship [8].
However, there is a lack of systematic processes to link organisational and per-
sonal values and reflect these as requirements to design inclusive organisational
processes. This paper seeks to define such a systematic process.

Emotional goal modelling builds on requirements modelling to capture the
emotional needs of users and construct people-orientated models that show how
users want to feel [15]. They serve as high-level representations of the functional,
quality and emotional goals of stakeholders, making them suitable for informing
technical design. EGMs can be used as communication tools to assist in devel-
oping a shared understanding of a problem. They have also been applied within
‘living labs’ which support co-creation between stakeholders and development
teams during the design process [20]. Emotional-led domain modelling has been
considered to represent needs of diverse users (e.g., age, culture, personality,
emotions) with adaptive software [7]. However the method lacks a way of ensur-
ing emotions are linked to design and implementation decisions and features.
In platforms for enhancing social interaction, successful applications have been
found to be driven by user emotional engagement. A key challenge is to capture
and understand users’ emotional requirements so that they can be incorporated
into interaction design [25].

Psychologically-driven requirements engineering assigned value goals based
on peoples’ roles in specific contexts, and emotional goals based on responses
toward the occurrence of values within a system [1].

The study of affective computing and affective states in requirements engi-
neering recognises the role emotions play in acceptance and negotiation activi-
ties [6]. However, there is a lack of modelling techniques that consider emotional
goals as a means of representing personal value requirements within organisa-
tional processes. In this paper, we build on existing EGM methodology to evalu-
ate a link between emotions and personal values within organisational processes.

Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design 327

3 Capturing Disparities in Employees Experience

This section presents the empirical study we conducted to understand employ-
ees’ experiences of joining and working within the organisation. We start by
describing the multi-national organisation in which the study took place. We
then report on how we identified the key disparity between men and women’s
experience.

3.1 Study Setup

We identified participants from a large manufacturing organisation. The organ-
isation involved is highly automated, heavily reliant on its software technology
and committed to equality and inclusion for its workforce. The study was set up
to look at the experiences of employees and investigate respective viewpoints of
their career journey. We interviewed 11 employees, 6 women and 5 men, from
a cross section of Engineering (7), Quality (1), and Operations (3) functions.
The engineers’ experience ranged from graduate entry level through to senior
leadership. They included 4 engineers (1–4 yrs experience), 4 mid-career middle
managers (5–10 yrs experience) and 3 senior managers (greater than 10 yrs expe-
rience). In this paper we will refer to the participants as employees. Interviews
were semi-structured, and lasting between 50–70min and were conducted over a
3month period. While prior studies have focused on uncovering bias within soft-
ware teams [30], we focused on broader organisational representation to capture
a diverse range of viewpoints.

We used thematic analysis [2] as a systematic method to analyse and code
the responses of participants. It is an iterative method of analysis and synthesis
allowing patterns and themes of the employees’ experience to be identified. It
consists of three main phases: descriptive, interpretative and thematic. In the
descriptive phase, we transcribed all interviews and established initial codes
based on the quotations and continued to develop these as we worked through
the interview transcripts. In the interpretative phase, we categorised the data
with similar codes into subthemes, we identified 42 subthemes, such as building
confidence, building trust, role models and self induced pressures. We grouped
and regrouped different codes to identify patterns in the data and create mean-
ingful themes describing how interrelationships between people and contexts fit
together. In the thematic phase, we created a descriptive story using excerpts of
interviews to describe the employee experience. Further details about the anal-
ysis can be found in Hassett (2018) [8,9]. We structure the findings as employee
experience maps [27] which allow us to visualise and contrast experiences.

3.2 Experience Mapping

We used positive and negative sentiment [11] to reflect employees’ experience
as shown in Fig. 1. We identified three key themes in the employee experience:
onboarding, development, and promotion. Within these, subthemes were identi-
fied in the iterative coding process and plotted along the x-axis. Onboarding

328 D. Hassett et al.

(when new to the organisation) includes three subthemes: introduction, getting
experience, and developing networks. Development includes the following sub-
themes: identifying career paths, developing expertise, utilising networks and
opportunity. Onboarding (when promoted to a new role) includes four sub-
themes: onboarding for promotion, supports, personal change, and being an
ambassador.

Fig. 1. Mapping Employee Experience

An example of a positive quotation is “having someone you can talk to, in kind
of an informal everyday basis”. An example of a negative quotation is “Moving
into the team leader role. I think we could do with a bit more support definitely,
and guidance”. The y-axis scale is the scaled relative quantity of positive or
negative quotations associated with each group for that subtheme rather than
graded on magnitude of emotion. For example, in development: developing exper-
tise, there were 3 positive quotations (from men) and 4 negative quotations (from
women), this corresponded to a disparity in experience illustrated by the greyed
area in Fig. 1. When the experiences were categorised, we observed disparity
between men and womens’ experience at three points.

(1) During onboarding, women actively network, seek out mentors, and contacts
to discuss technical and career areas. Men are less worried about networking,
with more informal “organic” networks.

(2) During development, men were assigned more technical tasks whereas female
employees took more organisational/procedural tasks. For example, there
were two employees with the same engineering qualification; the man was
assigned to Operational Support (fixing, designing, changing), the woman
was assigned to Quality Engineering (assessing risks, authorising changes).
In this case, the woman described her experience “I needed to know more,
won’t speak up even if know answer is correct”. While the man indicated
more confidence “Because even the shot in the dark, I have more information
about the shot in dark”.

Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design 329

(3) The promotion from engineer to manager reflects the most significant career
transition. We found that the support of a close network of like-minded peers
to provide informal advice and discuss challenges, helped employees adapt
to the transition. The availability and benefits of informal support to men
at promotion was evident, e.g., “Without an ounce of doubt, my peers and
colleagues have been a major support for me, the fact that other peers may
have gone through the same experience, the fact that I am able to sit down
and have a chat and go through”. This compares starkly with the experience
of one woman, who describes “I would have reached out for help sooner”.

We will now look to translate these (emotional) experiences (such as incon-
sistent onboarding processes) into goals for gender-inclusive processes.

4 Applying Emotional Goal Modelling to Design
Inclusive Processes

The data from thematic analysis is rich and detailed but lacks interpretative
power [4]. We used EGMs to translate employees emotional experience into
desired functional, quality and emotional goals. The emotional goals capture the
desired feelings of stakeholders within a socio-technical system and how they
relate to one another [15].

Emotional goals are defined as “the desired reflective level emotion of a
role” [15]. This definition relates to Normans’ three levels of emotions which
are visceral, behavioural and reflective [19]. Emotional goals differ from func-
tional goals and non-functional quality goals which represent intended proper-
ties of the system that affect the behavioural level [15]. The employee experience
map identified disparity between men and womens’ emotional experience during
onboarding, development and promotion. We now develop and propose EGMs
to address these disparities, and design the organisational process of onboarding
to create more gender-inclusive experiences for employees. We will now describe
the modelling phase in which we identify and capture functional, quality and
emotional goals to create EGMs (RQ1). We then describe how we evaluated
emotional goals as a link to personal values (RQ2).

4.1 Modelling

The first stage in creating EGMs was to analyse the coded interview responses
from the thematic analysis, extract key themes and identify them as functional,
quality or emotional statements. These are coded as do (functional), be (quality)
and feel (emotional) goals. The second step of the EGM analysis was to create
future-based “should” statements and assign these to the relevant quote [9]. The
following is an example of how an employee quote was transformed into func-
tional, quality and emotional goals for the theme of onboarding :

– Quote: “Sometimes success can be a failure. You can fail but you can learn
something out of it which will be the next big success. We don’t seem to manage
that very well.”

330 D. Hassett et al.

– Subtheme: learn from failure/experience approach
– Goal type: feel (emotional)
– Goal (should statement): acceptance to make mistakes

The final stage was to create the model to represent the functional, quality, and
emotional goals associated with stakeholder roles (such as manager, employee,
engineer). We followed three steps: (i) moving from left to right of the figure,
place stakeholders, functional goals on model, (ii) add the quality and emotional
goals and connect related functional goals, and add the process outcome. Finally,
(iii) assess and iterate the model to ensure goals and interactions make sense and
the model can be easily understood by stakeholders.

Fig. 2. Emotional Goal Model for Onboarding

Figure 2 depicts the EGM describing the set of functional, quality and emo-
tional goals for stakeholders in the onboarding process. It makes explicit those
goals to support the organisational value of inclusion. We use notation for moti-
vational goal modelling [13,26]. Relationships between goals and stakeholders
are indicated by non-directional connector lines. This is to visually represent
the multiple interactions within the EGM and allow the model to be under-
stood by non-technical stakeholders. The stakeholder (or “role”) shape represents
an individual/organisation. The functional goals are represented by a parallel-
ogram. Quality goals are represented by a cloud. Emotional goals are repre-
sented by a heart. There were six functional goals, three quality goals and three
emotional goals. The outcome is ’successful onboarding ’. Stakeholders include
new/promoted employee, manager, buddy, business partners and systems. In this

Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design 331

EGM, the functional goals describe what the process should do (e.g.,‘correct
tools to do the job’ and ‘access to information’). The quality goals describe how
the process should be (e.g., ‘to provide accessible network ’ and ‘safe learning
environment.’) The emotional goals describe how the process should feel and
include ‘supported ’, ‘valued ’ and ‘acceptance to make mistakes’.

From the EGM, we generated goal statements such as ‘Buddies need to create
a safe learning environment for the new hire, while letting them have access to
a proactive learning environment where it is acceptable to make mistakes’ (refer
to (1) on Fig. 2). Another EGM was also generated for development [8].

4.2 Mapping Emotional Goals and Personal Values

We then performed an evaluation of emotional goals generated within the EGM
to link with personal values definitions [24] using value terms [23]. We pro-
posed an initial mapping of emotional and value goals for inclusive processes.
We aligned functional, quality and emotional goals from the EGM as shown
in Fig. 3. Functional and quality goals supported fulfilling the emotional goals
for onboarding and development. For example, the functional goal of ‘2-way
proactive learning environment’ and quality goal of ‘safe learning environment’
aligned with the emotional goal of ‘acceptance to make mistakes’. Within the
context of the stated functional and quality goals, this emotional goal aligned
with the value goal ‘self-direction - freedom to determine ones own actions’. To
support the organisational value of gender-inclusion we assigned the value goals
based on alleviating the negative experience of women.

Organisational
process outcome

Functional goal Quality goal Emotional
goal

Value goal

successful
onboarding

information
available to
upskill quickly

start
valued,
supported

personal security - feeling
others care about me,
a sense of belonging

successful
onboarding

2-way proactive
learning
environment

safe learning
environment

acceptance to
make mistakes

self-direction - freedom to
determine ones own actions

successful
continuous
development

enable supportive
team environment

ability to
develop networks

inclusive universalism - concern,
equality for all

successful
continuous
development

opportunity to
display own work

bringing new/
diverse opinion

you can make self-direction - freedom to
determine ones own actions

Fig. 3. Mapping Emotional and Value Goals for Inclusive Processes

To represent gender-inclusion as an organisational value goal, we were able
to successfully align emotional goals ‘supported’, ‘valued’, ‘inclusive’, ’acceptance
to make mistakes’ to personal values goals of ‘personal security’, ‘self-direction’,
‘universalism’ and ‘self-direction’ respectively. The linkage between emotional

332 D. Hassett et al.

goals and value definitions provides process-related requirements that the organ-
isation can use to realise the desired value of inclusion.

We propose and demonstrate a systematic process for linking an organisation
value of gender-inclusion to employees’ personal values via emotional goals.

4.3 Threats to Validity

We now discuss some threats that might challenge our findings.

– Sample size and selection criteria. The selection was limited to 11 partici-
pants as no new subthemes and categories were emerging, representing theo-
retical saturation. As this study focused on gender inclusive representation of
men and women, we would recommend future studies incorporate GenderMag
assessment as well as hybrid working models [29].

– Coding and thematic analysis. The interviews were transcribed and coded
by one researcher. To minimise reliability bias, sample transcript was cross
checked with a second researcher to ensure factual interpretation.

– Generalisability. While these results are from one organisation, we are unable
to say if they can be generalised and further studies would be required.

5 Findings and Lessons Learned

In this paper, we used emotional responses to identify disparity in the experience
of men and women employed in a multinational organisation. We suggested that
this emotional response is in part due to misalignment between the values of the
organisation and those of employees impacted by the current processes [23]. This
section discusses findings, lessons learned, and their implications for requirements
engineering.

5.1 Findings

We now reflect on how our work addresses the research questions posed in Sect. 1.

RQ1: Can emotional goal models serve as requirements for design of
a (software) system that promotes inclusion within the organisation?
Using the organisational value of gender-inclusion we used emotional goal mod-
els to design gender-inclusive processes for onboarding (and development). We
found that employees wanted to feel ‘valued’, ‘supported’, and that it was ‘accept-
able to make mistakes’. We propose that EGMs can represent a high level goal
model which make explicit the functional, quality and emotional goals within
organisational processes.

RQ2: Can emotional goals contribute to a method for representing
personal values in organisational processes? We evaluated emotional goals
as a link to personal values and provided linkage between emotional goals and
personal values for inclusive design. The emotional goals ‘valued’, ‘supported’,

Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design 333

and that ‘it was acceptable to make mistakes’ aligned with values of ‘personal
security’ and ‘self-direction’ respectively. While our work was limited to one
organisation, and limited to men and women gender participants, the results are
encouraging. We suggest that emotional goals can serve as a proxy for personal
values and can support the formulation of requirements for designing processes
cognizant of the organisational value of gender-inclusion.

5.2 Lessons Learned

We now discuss in more detail some challenges identified during the process of
designing EGM and mapping them to values.

Conflicting Values. We identified two sources of conflicting values. Firstly, to
meet the organisational value of gender-inclusion we linked the emotional goal of
feeling ‘valued’ to the personal value ‘personal security’. However, when we con-
sider the positive experience of men, the same emotional goal of feeling ‘valued’
could have been associated with the value of ‘benevolence - being a reliable and
trustworthy member of the ingroup’. This values decision poses a challenge for
RE during design of organisational processes and systems. However, we propose
that maintaining alignment with the higher level organisational value of gender-
inclusion can ensure that under-represented groups are considered explicitly.
Secondly, we found the emotional goals of ‘valued’ and ‘acceptance to make mis-
takes’ represented values of ‘personal-security’ and ‘self-direction’ respectively.
When placed within Schwartz’s value continuum, these would be in conflict [24].
We believe the inclusion of emotional goals in requirements gathering offers an
opportunity to mediate values conflicts and trade-offs.

Emerging Values. When evaluating the EGM for onboarding, there was an
absence of ‘system’ level goals such as privacy and autonomy. As with any RE
process, designing with values and emotion is an iterative process. As we are
developing from organisational processes to a specific software system context,
additional values and emotions may emerge and will need to be considered and
integrated into the goal models. Therefore we propose future work (i) using
EGM-led prototypes, and (ii) iterating EGMs with stakeholders, to understand
how new emotional goals and personal values surface. Existing RE tools and
methods will need to be reviewed to integrate and maintain these emergent
requirements.

In summary, the evaluation of emotional goals as representation of personal
values within organisational processes identified two key challenges, those of
conflicting values and emerging values. We propose future work to include use
of emotional goals to mediate value trade-offs and supporting ongoing design
iteration using EGMs and EGM-led prototypes early in requirements gather-
ing. In other words, emotional goals offer an approach to translating employees’
lived experience during career development into values requirements for software
systems.

334 D. Hassett et al.

5.3 Implications for RE

As society evolves, so do its values and priorities. To adapt, RE needs to con-
sider not only what values to prioritise, but how these values are reflected in
practice [16]. Emotions provide one representation of personal values. Modelling
them as requirements necessitates reflection on existing RE methods and tech-
niques to investigate how they can be extended to be more explicit in represent-
ing and reasoning about different values. Inclusion represents an example of an
organisational value that reflects societal values. The redesign of organisational
processes informed by emotional responses of stakeholders will benefit society.
However, it can also lead to challenges. For example, prioritising some values,
such as inclusion above immediate economic value, can be disruptive to tra-
ditional approaches of prioritising requirements. Indeed, expanding to consider
other organisational values such as sustainability will require existing methods
to adapt in order to incorporate an additional set of complex value requirements,
whose costs and benefits can then be more systematically considered.

6 Conclusion

This paper presented a systematic approach to design gender-inclusive processes
using emotional goals to link organisational and personal values. It takes a step
towards making requirements of personal values explicit through emotions. It
thus provides an approach to operationalise employees’ personal values.

The results can be extended in a number of ways. These include evaluating if
emotional goals can be used to link other organisational values such as sustain-
ability with personal values. We plan to extend the work to consider conflicting
and emerging values within EGM by (i) prioritising emotional goals when per-
sonal values are conflicting, and (ii) analysing the use of EGMs and EGM-led
prototypes to surface emotions and values early in the requirements engineering
process. Our ambition is that by designing inclusive organisational processes,
then the products, the services, and ultimately the software that these organi-
sations create, will reflect values of the society that we want to live in.

Acknowledgements. This work was supported, in part, by Science Foundation
Ireland grants 16/RC/3918 (Confirm), and 13/RC/2094 P2 (Lero), EPSRC grant
(EP/R013144/1) (SAUSE), and UKRI Trustworthy Autonomous Systems Node in
Resilience (EP/V026747/1). Thanks to Patrick Slevin for his encouragement and sup-
port during the empirical study, and to Helen Sharp and Andrea Zisman for feedback
on early revisions.

References

1. Alatawi, E., Mendoza, A., Miller, T.: Psychologically-driven requirements engi-
neering: a case study in depression care. In: ASWEC. IEEE (2018)

2. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design 335

3. Burrows, R., Lopez-Lorca, A., Sterling, L., Miller, T., Mendoza, A., Pedell, S.:
Motivational modelling in software for homelessness: lessons from an industrial
study. In: RE (2019)

4. Cruzes, D.S., Dybå, T.: Synthesizing evidence in software engineering research.
In: ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (2010)

5. Eskelinen, J., Robles, A.G., Lindy, I., Marsh, J.B., Muente Kunigami, A.: Citizen-
driven innovation: A guidebook for city mayors and public administrators. Tech-
nical report, The World Bank (2015)

6. Fucci, D., Kuhn, S., Maalej, W.: The second international workshop on affective
computing for requirements engineering (affectre2019). In: RE Workshops (2019)

7. Grundy, J., Khalajzadeh, H., Mcintosh, J.: Towards human-centric model-driven
software engineering. In: ENASE, pp. 229–238 (2020)

8. Hassett, D.: Finding a Voice: Using Design Ethnography And Emotional Goal
Modelling To Empower Employees In STEM Careers. Master’s thesis, Department
of Design Innovation (2018)

9. Hassett, D.: Finding a voice: Codebook (2018). http://bit.ly/3AzLxTt
10. Kahle, L.R., Beatty, S.E., Homer, P.: Alternative measurement approaches to con-

sumer values: the list of values (lov) and values and life style (vals). J. Consum.
Res. 13(3), 405–409 (1986)

11. Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: 20th International
Conference on Computational Linguistics, pp. 1367–1373 (2004)

12. Liedtka, J.M.: Value congruence: the interplay of individual and organizational
value systems. J. Bus. Ethics 8(10), 805–815 (1989)

13. Marshall, J.: Agent-based modelling of emotional goals in digital media design
projects. In: Innovative Methods, User-Friendly Tools, Coding, and Design
Approaches in People-Oriented Programming, pp. 262–284. IGI Global (2018)

14. Mens, T., Cataldo, M., Damian, D.E.: The social developer: the future of software
development [guest editors’ introduction]. IEEE Softw. 36(1) (2019)

15. Miller, T., Pedell, S., Lopez-Lorca, A.A., Mendoza, A., Sterling, L., Keirnan, A.:
Emotion-led modelling for people-oriented requirements engineering: the case study
of emergency systems. J. Syst. Softw. 105, 54–71 (2015)

16. Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From what to how: an initial review
of publicly available ai ethics tools, methods and research to translate principles
into practices. Sci. Eng. Ethics 26(4), 2141–2168 (2020)

17. Mougouei, D., Perera, H., Hussain, W., Shams, R., Whittle, J.: Operationalizing
human values in software: a research roadmap. In: ESEC/FSE (2018)

18. Mussbacher, G., Hussain, W., Whittle, J.: Is there a need to address human values
in domain modelling? In: MoDRE (2020)

19. Norman, D.: Emotional Design: Why We Love (or Hate) Everyday Things. Basic
Books (2007)

20. Pedell, S., et al.: Methods for supporting older users in communicating their emo-
tions at different phases of a living lab project. Technol. Innov. Manage. Rev.
(2017)

21. Perera, H., Mussbacher, G., Hussain, W., Shams, R.A., Nurwidyantoro, A., Whit-
tle, J.: Continual human value analysis in software development: a goal model
based approach. In: RE (2020)

22. Posner, B.Z., Schmidt, W.H.: Values congruence and differences between the inter-
play of personal and organizational value systems. J. Bus. Ethics 12(5) (1993)

23. Schwartz, S.H.: An overview of the schwartz theory of basic values. Online Read.
Psychol. Cult. 2(1) (2012)

http://bit.ly/3AzLxTt

336 D. Hassett et al.

24. Schwartz, S.H., Cieciuch, J., Vecchione, M., Davidov, E., et al.: Refining the theory
of basic individual values. J. Pers. Soc. Psychol. 103(4) (2012)

25. Sherkat, M., Mendoza, A., Miller, T., Burrows, R.: Emotional attachment frame-
work for people-oriented software. arXiv preprint arXiv:1803.08171 (2018)

26. Sterling, L., Taveter, K.: The Art of Agent-Oriented Modeling. MIT Press (2009)
27. Stickdorn, M., Hormess, M.E., Lawrence, A., Schneider, J.: This is Service Design

Doing: Applying Service Design Thinking in the Real World. O’Reilly (2018)
28. Thew, S., Sutcliffe, A.: Value-based requirements engineering: method and experi-

ence. Requirements Eng. 23(4), 443–464 (2018)
29. Vorvoreanu, M., Zhang, L., Huang, Y.H., Hilderbrand, C., Steine-Hanson, Z., Bur-

nett, M.: From gender biases to gender-inclusive design: an empirical investigation.
In: CHI (2019)

30. Wang, Y., Redmiles, D.F.: Implicit gender biases in professional software develop-
ment: an empirical study. In: Kazman, R., Pasquale, L. (eds.) ICSE-SEIS (2019)

31. Yu, E., Liu, L.: Modelling trust for system design using the i* strategic actors
framework. In: Falcone, R., Singh, M., Tan, Y.-H. (eds.) Trust in Cyber-societies.
LNCS (LNAI), vol. 2246, pp. 175–194. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45547-7_11

http://arxiv.org/abs/1803.08171
https://doi.org/10.1007/3-540-45547-7_11
https://doi.org/10.1007/3-540-45547-7_11

A Product Owner’s Navigation in Power
Imbalance Between Business and IT:

An Experience Report

Lotte Mygind1 , Jens Bæk Jørgensen1(B) , and Lutz Prechelt2

1 Mjølner Informatics A/S, Aarhus, Denmark
{lmy,jbj}@mjolner.dk

2 Freie Universität, Berlin, Germany
prechelt@inf.fu-berlin.de

Abstract. [Context and motivation] We consider a company where software
development was previously a minor activity and today is a major activity with
high priority and attention. Software is now developed according to Scrum, and the
company can be seen as being in an agile transition. [Question/problem] What
are the relevant specifics of this organization and which product owner behaviors
appear to be valuable or problematic, respectively? [Principal ideas/results] A
fear of disruption put the development teams under pressures that led to low
efficiency in an interesting way. The introduction of an IT product owner to assist
a business product owner reduced this effect, but a problematic power imbalance
still remains. [Contribution] Not only do agile technical teams need feedback
from their product owner, the product owner also needs meaningful, effective
feedback from the teams. Our experience report shows how this can be improved
by the introduction of an IT product owner when the organization otherwise has
insufficient focus on certain important dynamics of software engineering.

Keywords: Requirements Engineering · Product Ownership · Project
Organization · Cooperation between Business and IT · Software Quality

1 Introduction

We consider a company where one of the authors of this paper has been a consultant
as product owner. The product owner, an integral part of Scrum [1], is a key role in
modern agile software projects in the industry, and the role is crucial for the quality of
the developed solutions. A product owner should have knowledge of requirements engi-
neering and should facilitate the interplay between business stakeholders and software
development teams. The product owner must contribute significantly to the elicitation,
specification, validation and prioritization of requirements in a given organizational
context.

In [2], Lauesen’s taxonomy for functional requirements includes goal-level, domain-
level, product-level, and design-level. In most software development projects, functional
requirements on all four levels are relevant and exist with different degrees of explicit

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 337–350, 2023.
https://doi.org/10.1007/978-3-031-29786-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_24&domain=pdf
http://orcid.org/0000-0001-9843-5704
http://orcid.org/0000-0002-0182-1463
http://orcid.org/0000-0001-5592-3521
https://doi.org/10.1007/978-3-031-29786-1_24

338 L. Mygind et al.

or implicit representation. A product owner must be able to work at all four levels and
must facilitate bridging between the levels with assistance from experts, such as an IT
architect or a user experience expert.

Product ownership in software projects is described in numerous papers, for example,
[3–6]. These papers are case studies by researchers, while this paper is an experience
report based on a practitioner’s participation in a project for two years.

This paper introduces the company, project and product owner role in Sects. 2, 3
and 4. Section 5 presents a quantitative analysis of the backlog. Section 6 describes key
observations about the product owner’s work and the lesson learned: there is a power
imbalance between business and ITwhich is too big. Relatedwork is discussed in Sect. 7,
which is followed by the conclusions in Sect. 8.

2 The Company

The company1 is a traditional company in the fossil fuel industry. The main products are
threatened by disruption in the form of electrification. In response to this, the company
has introduced a new business area with a number of electrical products, which are
highly interactive and digital. Looking back 5–10 years, the company had fewer than 20
employees working with IT, and today this has grown to around 150 people.

The company has a business division and an IT department, including a large IT
development department headed by an IT development manager. A user experience
department is part of the business division, see Fig. 1.

The product owner role is shared between a business product owner and an IT product
owner, employed in the new business area and IT respectively. The IT product owner is
one of the authors of this paper.

Business

Electrical
business

area

Business
product
owner

Fossil fuels ... User
experience

IT

IT dev

IT product
owner

Team 1 Team 2 Team 3

...

Fig. 1. Company organization.

1 The company is kept anonymous.

A Product Owner’s Navigation in Power Imbalance Between Business and IT 339

3 The Project

3.1 History

After the new business area was introduced in late 2019, a software development project
to support it was initiated in early 2020. An IT architect, several software developers
and the business product owner joined the project within a few months.

The staffing has grown significantly since then. As of now, there are three Scrum
teams, each with a Scrum master. In addition, there is an IT architect, a technical sup-
porter, two testers, and the IT and business product owners2, and these roles support
all teams. The total number of team members in the IT department is 24 plus eight at a
subcontractor. Moreover, the company plans to hire more developers for an additional
team in the near future. Lastly, several user experience specialists work with the product.
Figure 2 illustrates the timeline.

2020
Develop first products

2021
Launch products

2022
New features

IT project
ini�a�on

Business product
owner joins

First launch
(MVP)

Third
launch

Many features and
new launches planned

Second
launch

IT product
owner joins

Major feature
launch

Fig. 2. Timeline of the project.

The company expects significant IT development for a decade ahead across sev-
eral product suites in the new business area. For this reason, the activities can be seen
as numerous, concurrent projects, or a program in the sense of project management
literature. We use the term project, because this is how the company describes it.

3.2 Project Organization

The IT product owner works with all three Scrum teams. Furthermore, there is an IT
project manager whose main responsibility is to create realistic plans for major releases.
He is also a member of a steering group along with the IT development manager.

The chart in Fig. 3 illustrates the main flow of development tasks. The business
product owner describes new domain-level requirements and communicates these to
the IT product owner for analysis and feedback. When needed, the IT product owner
consults the architect for an early, deeper analysis of the most complex requirements.
For most requirements, the architect will not see the user stories until sprint start, and
this works well most of the time. If the IT product owner has overlooked any non-trivial
technical issues, the user story is taken out of the sprint to be analyzed further.

2 Two additional IT product owners were hired shortly before the author left the project. This
article describes the time with only one IT product owner.

340 L. Mygind et al.

When applicable, the user experience team cooperate with the IT product owner and
describe a detailed solution for the user interface, i.e., design-level requirements. There
are numerous alternate flows and backward loops, in addition to the main flow depicted
in Fig. 3.

The IT product owner writes user stories (in a broad interpretation of this term) for
specification to the development teams and defines the verification criteria. When the
developers have implemented auser story, the testers verify it according to the verification
criteria. Finally, the functionality is deployed to the production environment.

Fig. 3. Flow of requirements-related and development tasks in the project organization.

4 The Product Owner Role

Before this project, the company used product owners from the business division, with
the mindset that the business would order IT deliveries from the IT department.

When the project started in early 2020, the business area was new, and a prod-
uct owner was hired as the second employee in the business area. He has a back-
ground in business administration with limited experience of IT development projects
and no domain knowledge. As the project grew, it became clear that he needed assis-
tance in requirements engineering, including elicitation, specification, validation and
prioritization of requirements.

The company hired one of the authors as a consultant who could teach the user story
technique to the business product owner. She is an experienced product owner and has
extensive domain knowledge in the relevant industry. She joined the project in October
2020. During the following months it became clear that the business product owner only
had the time for and the interest in goal- and domain-level requirements, so the author
was given a long-term contract, and people gradually started to describe her as the “the
IT product owner”, a new role in the organization (Fig. 4).

In June 2021 the management of the IT development asked the IT product owner and
the IT project manager to describe the IT product owner role and a list of qualifications.
After this, IT management decided that all IT projects should have such an IT product
owner, so most projects in the organization now have an IT product owner.

The Scrum Guide [1] does not state whether the product owner is a part of the
business organization or a part of the IT organization. The role of the product owner

A Product Owner’s Navigation in Power Imbalance Between Business and IT 341

Fig. 4. The product owner role has evolved during the lifetime of the project.

is to “maximize the value of the product resulting from the work of the Scrum Team.”
The product owner must “define and communicate product goals, maintain the product
backlog and ensure the backlog is transparent, visible and understood.” In the project
considered here, the product owner role is implemented by the joint work of the business
product owner and the IT product owner.

4.1 Division of Work with Requirements

In most cases, the requirements elicitation, specification/description and prioritization
are shared between the steering group, product owners and user experience as shown in
Fig. 5.

Fig. 5. The work with requirements is shared between various roles.

The goal-level requirements of the steering group are based on input from the prod-
uct roadmap. The steering group study the product roadmap in order to find the most
important areas and define goal-level requirements, such as “At the end of 2023 the

342 L. Mygind et al.

number of customers for product X should be more than Y” or “Feature Amust be ready
for all private customers in July 2023”.

The business product owner gathers input for the product roadmap based on feedback
from sales and end users (primarily via customer support). The roadmap is normally
presented to the steering group without any estimates of the complexity of the features.

The two product owners meet at least twice a week to coordinate work. The business
product owner typically brings a list of domain-level requirements, while the IT product
owner brings a list of questions, feedback and analysis results, which often include
estimates and risk assessments.

When the IT product owner believes there is a good breakdown of a requirement with
sufficient implementation details, the architect makes a rough estimate. Whenever the
estimate is higher than expected by the business or high compared to the relative value
of the feature, the IT product owner discusses the situation with the business product
owner. This often leads to re-prioritization.

4.2 User Stories, Verification and Definition of Done

When the IT product owner joined the project, she intended that all work items should
be user stories describing the direct value for a user role. We explain below that the IT
product owner applies a modified approach.

The teams use a continuous integration strategy, where automated tests are imple-
mented by the developers as part of the coding, and these tests are supplemented with
work item verification by a tester. If a work item has been active for a long time before
verification, it is difficult to release it without also releasing other (unverified) changes.

As the project grew, the verification process often blocked the release pipeline, so
the teams now prefer small, independent work items that can be released independently.
Therefore, the IT product owner creates small, independent work items that add either
value or functionality, and these are not necessarily traditional user stories that add direct
value for users. Implementation of a new internal endpoint is an example of a work item
that does not add value for users, but it can be tested and released independently. If a
work item is not testable, the IT product owner makes sure that it is tested at a later point.

There are two checkpoints that each work item must pass before release. The first
is a checklist for the software developers before the work item is assigned to a tester.
This includes checks of code quality, peer review and unit tests. The second checkpoint
is verification according to the criteria described in the work item. Thus, the definition
of done in the sense of Scrum [1] combines the developer checklist and the verification.

5 Quantitative Analysis of the Product Backlog

The status and history of the project’s work items are analyzed in this section in order to
see if the data may serve to illustrate the state of the project and the IT product owner’s
work. We discuss the data in further details in Sect. 6.

A Product Owner’s Navigation in Power Imbalance Between Business and IT 343

The project has a history of a growing backlog3, see Fig. 6. The number of bugs
is low due to an explicit prioritization: At each sprint planning, resolution of bugs is
prioritized highest.

Fig. 6. The size of the backlog (new work items) is growing, but the number of bugs is stable.

The work items are grouped in features, and there are 93 features in state new
or active4 (65% see Fig. 7). In Sect. 6.1, we explain how a high business pressure may
simultaneously result inmany features in state new. Furthermore, Sect. 6.2 shows how the
pressure at the same time may create a situation with many active, incomplete features.

Fig. 7. 35% of features are closed. The majority of features (51%) are in state new.

To understand the features that have not yet been fully implemented (closed), we
have investigated the lifecycle of the individual backlog items, see Fig. 8. In total 22%
of the backlog items created during this time period are still in state new. This will be
discussed further in Sect. 6.

3 All data in this section is for work items created before August 1st, 2022. The data has been
extracted from the historical user stories in Azure Devops.

4 The state of the work items on August 1st, 2022.

344 L. Mygind et al.

0
20
40
60
80

100
120
140

O
C

T
 2

0
2

0

N
O

V
 2

0
2

0

D
E

C
 2

0
2

0

JA
N

 2
0

2
1

FE
B

 2
0

2
1

M
A

R
 2

0
2

1

A
P

R
 2

0
2

1

M
A

Y
 2

0
2

1

JU
N

 2
0

2
1

JU
L

2
0

2
1

A
U

G
 2

0
2

1

SE
P

 2
0

2
1

O
C

T
 2

0
2

1

N
O

V
 2

0
2

1

D
E

C
 2

0
2

1

JA
N

 2
0

2
2

FE
B

 2
0

2
2

M
A

R
 2

0
2

2

A
P

R
 2

0
2

2

M
A

Y
 2

0
2

2

JU
N

 2
0

2
2

JU
L

2
0

2
2

Nu
m

be
r o

f w
or

k
ite

m
s c

re
at

ed

Crea�on month

Started within 30 days Started within 60 days Started later Not started

Fig. 8. Number of work items per creation month. The darkest color shows user stories that have
been left in state new5.

6 IT Product Owner Observations and Lesson Learned

Based both on the description of the product owner role and the quantitative analysis
of the preceding sections, we will now describe two observations and a main lesson
learned, which have their roots in the power imbalance between business and IT. This
imbalance occurs in many companies, since their main focus is to manufacture and
sell their products. Software development is just one activity among many others, and
sometimes not a high-attention activity seen from theperspective of a company’s business
side and senior management. The imbalance is predictable, and it is our responsibility
as software professionals to handle it properly to ensure good working conditions for
software teams for the benefit of the company as a whole.

6.1 Mismatch Between Organizational Pressure and Product Owner Capacity

In early 2021, the business pressure increased. In fact, the business product owner
extended the IT roadmap of the project to include 81 domain-level requirements.

From mid-2021 it became difficult for the IT product owner to find time for all the
work. The number of customers grew rapidly, and since the IT product owner was the
point of contact to the business, she constantly had to delegate production errors and
support issues to team members. At the same time, the company gradually added more
developers, so the task of supporting the work of all developers and testers grew. In the
autumn of 2021, the project went from two to three Scrum teams.

5 The state of the work items was extracted from Azure Devops on September 30th, 2022. Only
work items created before August 1st, 2022 have been included.

A Product Owner’s Navigation in Power Imbalance Between Business and IT 345

The early estimates made by the IT product owner have only had limited impact on
the priorities of the 81 domain-level requirements. There was, for example, one domain-
level requirement that the business expected to be completed in a few sprints, whereas
the IT product owner estimated it to be a complex subproject with a time horizon of
many months. The business product owner did not accept this as a fact, so the IT product
owner spent several months breaking the domain-level requirement into work items for
more detailed estimation. In the end, the project was postponed because of the high
estimates, and this was escalated to the steering group. The requirement was, however,
immediately replaced by another subproject that had not been estimated at all. In this
way, nobody evaluated whether the business value would match the effort for the new
requirements, and implementation started before the full analysis had been done.

In this way, postponed subprojects are part of the reason behind the many features
in state new on Fig. 7. Furthermore, the corresponding user stories are represented as a
spike of unimplemented work items in Fig. 8. At the end of 2021 we estimate that the
product owner spent 75% of her time on day-to-day support of the development teams.
At this point, there were still approximately 80 domain-level requirements. Some of
these were themselves full-sized projects. If we estimate an average of two workdays
of product owner work for each domain-level requirement, this adds up to eight months
of full-time work, which can be completed over 32 months (at 25% capacity for this
work). This amount of time is far beyond reasonable and is an impediment for agile
development.

On Fig. 8 the darkest color illustrates requirements that are dropped. This reflects the
high number of ideas on the roadmap that the IT product owner has spent time on, but
the team has not. Thus, there is a mismatch between the business’ requests for analysis
and the capacities of both the IT product owner and the development teams.

At the same time Fig. 8 shows that many work items are implemented after more
than 60 days, and for these, the IT product owner must often update the descriptions
before the backlog item is handed over to the development teams. After two months the
software has often had changes to relevant data structures or interfaces invalidating the
old description. Thus, the IT product owner must find time to analyze and describe more
items than the teams implement, and the items that do get implemented must often go
through an extra revision, because implementation is delayed.

The data illustrates a high-pressure environment where the IT product owner must
analyze a high number of requirements. The effect was that she could not always provide
qualified input to the prioritizations of the business product owner and steering group in
time.

There are two obvious solutions. The first is to add more resources to the IT product
owner function, which the company has done in mid-2022. The new resources are strong
profiles who will be able to work as two cooperating IT product owners. It is unclear
whether the two new IT product owners have enough capacity to make sure that steering
group prioritizations are consistently based on estimates.

The second solution is to add a mechanism for prioritization and long-term planning
of the IT product owner’s work. This could, for example, be in the form of a board
where the work of the IT product owner is tracked (for example, in status new, active
and done), and this board could be used for communication with the business product

346 L. Mygind et al.

owner in order to prioritize the work and limit the number of parallel tracks. This has not
yet been implemented. Such planning of the product owner’s work is difficult to accept
for the business, because the high pressure creates an environment where the business
always wants more analysis in the hope that the product owner can find an easy solution
for the next problem.

6.2 Insufficient Trade-Offs Between Business Demands and Software Quality

In this project, we have often seen that when the most central functionality supporting a
domain-level requirement has been implemented, the business wants to prioritize some-
thing else. Under the pressure, the business wants new features quickly, and as a result,
the product has a lot of barely-viable solutions, which are reflected as active features in
Fig. 7.

While the number of customers has grown significantly, the number of people work-
ing in administrative functions to perform workarounds for missing functionality has
also grown significantly. At the same time the performance of the IT development teams
is negatively affected by an increasing number of database updates and support for the
administrative workers.

In Scrum, one of the product owner’s most important tasks is to make prioritization
continuously, sprint after sprint. As we see here, domain-level requirements with high
prioritymight get lower priority at some point, andmany features are never completed. In
the opinion of the ITproduct owner, architect and, in fact, all development teammembers,
the business product owner’s prioritization is too volatile, resulting in incomplete features
that create extra work for the development teams in the long run.

While a lot of bad decisions have been avoided because of good communication
between the business and IT product owners, it has been difficult to find the right balance;
this has sometimes been subject to intense debates between the business product owner
and the IT product owner.When everything is broken into small, independent work items
for prioritization (see Sect. 4.2), the business product owner can pinpoint elements that
seem minor from a functional point of view.

In the aftermath of all these minimal implementations, the IT product owner has
learned that due to the high business pressure, it is difficult for the business product
owner to prioritize features that are not directly linked to the product roadmap. After
a lot of discussions between the two product owners, the business product owner has
extended the roadmap with some features that ensure continued scalability, operability
and performance – more generally, software quality. In this way, the IT product owner
has pushed technical requirements to be recognized and prioritized.

6.3 Lesson Learned: Power Imbalance Between Business and IT is Too Big
and Must Be Addressed

The observations above illustrate the power imbalance between the business and IT. The
company is in a quick transition from a traditional, industrial company to an IT service
company, but the company has not yet reached maturity as to how to prioritize larger
business roadmaps.

A Product Owner’s Navigation in Power Imbalance Between Business and IT 347

The company has taken one important step in the transition, namely hiring IT product
owners to work with all development teams, but the IT product owners have not been
given a proper mandate. In the current set-up, the IT product owners can argue their
cases and deliver estimates for early prioritization, but they are often overruled.

The power imbalance between business and IT must be addressed to ensure con-
tinued and efficient progress in the company’s agile transition. Looking back, the IT
product owner could have attempted to do more to communicate this observation to
upper management at an earlier point in time in an attempt to contribute to a resolution.
This is difficult, however, as the root causes lie in the company’s organization and its
inherent culture, so it is likely that the necessary changes will not happen in a short time
frame.

One approach for the communication could be to show some of the data in Sect. 5
to higher-level management. The figures illustrate the ever-changing directions of the
project with many features that are not closed (Fig. 7) and many work items where
implementation starts late or never starts (Fig. 8). Furthermore, the IT product owner
could have kept a record of goal-level requirements where the teams were told to start
implementation immediately without further analysis (see an example in Sect. 6.1) and
situations where the recommendations of the IT product owner were overruled by the
business (see examples in Sect. 6.2).

7 Related Work

The Scrum guide [1] insists that “The Product Owner is one person, not a committee.”
In the project considered in this paper, it was vital that the product owner became a
committee consisting of business product owner and IT product owner. The reason was
threefold: scale - the business product owner being too busy to fully do all the things the
teams needed; maturity - the business product owner not understanding the implications
of his actions well enough; and power - there was no one who could successfully oppose
the business product owner when needed.

Our experience, that the product owner gets too busy when the organization around
her grows, is of course a common problem, and there are several approaches to scale
agile development, including the scaled agile framework (SAFe) and Scrum@scale. For
a recent overview of approaches, see Edison et al.’s survey paper [7].

Scalability is obviously an important issue, but there are also other issues which are
relevant to discuss.We use Bass and Haxby’s framework of roles in product owner teams
as a theoretical lens for obtaining a useful alternative view of our case [8]. They consider
three dimensions they call Scale, Distance, and Governance. Distance effects are absent
in our case; scale effects have already been discussed; regarding governance, Bass and
Haxby suggest three roles for solving Governance issues: Technical Architect, Governor
(who watches over adherence to corporate technical policies), and Risk Assessor. The
latter was required for solving the problem in our case: Evaluate and highlight risks
involved in a particular course of action, so that problematic routes can be avoided. Bass
and Haxby also recommend making product owner teams explicit, which happened
naturally in our case.

For understanding the maturity dimension, the mapping study by Unger-Windeler
et al. [3] is helpful. It maps out topics and findings from 30 studies of product owners in

348 L. Mygind et al.

industrial settings. Like [8], they find that product owners for larger-scale settings will
have to be teams. In terms of roles, they list no fewer than 14 distinct roles for product
owners that have been discussed in multiple (as opposed to only one) publications. Two
of them help understanding what went wrong in our organization initially, before the
IT product owner was introduced: Prioritizing the backlog [4, 9, 10] and managing
expectations [11, 12]. Both are rather basic aspects of product owner work. Yet our
business product owner was unable to manage expectations. The reason was that he
did not know what to expect because he was relatively inexperienced with large-scale
software development. For the same reason, his prioritization used inappropriate criteria,
and resulted in the negative side effects we have described.

As for the power imbalance problem, Scrum has two roles responsible for solving
that: The product owner, by prioritizing work appropriately, and the Scrum Master,
by fighting against distractions (such as the support work arising from the incomplete
features). Boehm and Turner called these tasks the “protector” role already in 2005 [13].
Yet in our case, coach roles had barely developed in the organization and the product
owner was the very source of the problem. Therefore, it required the introduction of the
IT product owner to get to effective software development.

8 Conclusions

In this paper, we have described the work of the IT product owner and her naviga-
tion in an organization where there is an imbalance between business and IT. We have
supplemented this with a quantitative analysis to illustrate and discuss the state of the
project and the product owner’s work. While the analysis has the obvious weakness that
it may show the product owner’s work methods more clearly than the general state of
the project, it would be interesting to compare such data for a larger number of projects.

In general, a product owner builds a bridge between business and IT, but this requires
an organization that is in better balance than the one described in this paper. As IT
professionals, we should work on strengthening our communication with stakeholders
with no or low interest in software development in the organizations we work in. An
example of this is described in [14].

We have been partially successful in doing that: Upper management has recognized
the benefits of strong product ownership, and for this reason, as mentioned in Sect. 4,
it has been decided to apply a set-up with a business product owner and an IT product
owner to all other IT projects in the organization.

A reason for this is that the product ownership in the considered project has been
strong in many respects, and it has been visible for upper management that this has
been the case. There is a well-structured, well-described backlog, strong communication
between business and IT and good access to support for developers and testers. The
organization saves development time, because it is ensured that focus is on features that
bring the right amount of value compared to the effort. The developers are, in general,
very satisfied with this approach. They get well-defined user stories in sprints, so they
can focus on their favorite activity, namely coding. They have immediate access to
clarification from the IT product owner when needed and they are always able to discuss
alternative implementation ideas with the architect or IT product owner. Furthermore,
they experience only few interruptions from analysis of future features.

A Product Owner’s Navigation in Power Imbalance Between Business and IT 349

On the other hand, the company’s agile transition is certainly not yet completed. It
is a problem that many business stakeholders in the company still see IT as a supporting
function where they “order” IT systems. The terminology in the business is: “We tell
you what we want and when, and you tell us the cost”.

We believe that the company could get more value by involving IT more and earlier
in identifying where to get the best value compared to the effort. The company has to
some degree done this by introducing the IT product owner role, but the IT product
owner has only had the power of argumentation - and has often been overruled.

References

1. Schwaber, K., Sutherland, J.: The Scrum Guide – The Definitive Guide to Scrum: The Rules
of the Game. https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf

2. Lauesen, S.: Software Requirements – Styles and Techniques. Addison Wesley (2004)
3. Unger-Windeler, C., Klünder, J., Schneider, K.: Amapping study on product owners in indus-

try: identifying future research directions. In: 2019 IEEE/ACM International Conference on
Software and System Processes (ICSSP),Montreal, Quebec, Canada. https://doi.org/10.1109/
icssp.2019.00026

4. Bass, J.M., Beecham, S., Razzak, M.A., Canna, C.M., Noll, J.: An empirical study of the
product owner role in scrum. In: ICSE 2018: Proceedings of the 40th International Confer-
ence on Software Engineering: Companion Proceedings, Gothenburg, Sweden. IEEE (2018).
https://doi.org/10.1145/3183440.3195066

5. Matturro, G., Cordoves, F., Solari, M.: The role of product owner from the practitioner’s
perspective. An exploratory study. In: 16th International Conference on Software Engineering
Research and Practice (SERP 2018), Las Vegas, Nevada, USA, pp. 113–118. CSREA Press
(2018)

6. Kristinsdottir, S., Larusdottir, M., Cajander, Å.: Responsibilities and challenges of product
owners at spotify - an exploratory case study. In: Bogdan, C., et al. (eds.) HCSE/HESSD
-2016. LNCS, vol. 9856, pp. 3–16. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-44902-9_1

7. Edison, H., Wang, X., Conboy, K.: Comparing methods for large-scale agile software devel-
opment: a systematic literature review. IEEETrans. Softw. Eng. 48(8), 2709–31 (2022). IEEE.
https://doi.org/10.1109/tse.2021.3069039

8. Bass, J.M., Haxby, A.: Tailoring product ownership in large-scale agile projects: managing
scale, distance, and governance. IEEE Softw. 36(2), 58–63 (2019). https://doi.org/10.1109/
MS.2018.2885524

9. Bass, J.M.: How product owner teams scale agile methods to large distributed enterprises.
Empir. Softw. Eng. 20(6), 1525–1557 (2014). https://doi.org/10.1007/s10664-014-9322-z

10. Bass, J. M., Beecham, S., Razzak, M. A., Canna, C. N., Noll, J.: An empirical study of the
product owner role in scrum. In: Proceedings of the 40th International Conference on Software
Engineering: Companion Proceedings (2018). https://doi.org/10.1145/3183440.3195066

11. Finsterwalder, M.: Does XP need a professional Customer? In: Proceedings of the XP2001
Workshop on Customer Involvement (2001)

12. Sverrisdottir, H.S., Ingason, H.T., Jonasson, H.I.: The role of the product owner in scrum:
comparison between theory and practices. Procedia Soc. Behav. Sci. 119, 257–267 (2014).
https://doi.org/10.1016/j.sbspro.2014.03.030

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://doi.org/10.1109/icssp.2019.00026
https://doi.org/10.1145/3183440.3195066
https://doi.org/10.1007/978-3-319-44902-9_1
https://doi.org/10.1109/tse.2021.3069039
https://doi.org/10.1109/MS.2018.2885524
https://doi.org/10.1007/s10664-014-9322-z
https://doi.org/10.1145/3183440.3195066
https://doi.org/10.1016/j.sbspro.2014.03.030

350 L. Mygind et al.

13. Boehm, B., Turner, R.:Management challenges to implementing agile processes in traditional
industrial organizations. In: IEEE Softw. 22(5), 30–39 (2005). IEEE. https://doi.org/10.1109/
ms.2005.129

14. Jørgensen, J.B., Christensen,H.L.,Hansen, S.T.,Nyeng,B.B.: Effective communication about
software in a traditional industrial company. In: 2022 IEEE 44th International Conference on
Software Engineering (ICSE), 5th International Workshop on Software-Intensive Business,
Pittsburg, Pennsylvania, USA. IEEE (2022). https://doi.org/10.1145/3524614.3528625

https://doi.org/10.1109/ms.2005.129
https://doi.org/10.1145/3524614.3528625

Eliciting Security Requirements
– An Experience Report

Roman Trentinaglia(B) , Sven Merschjohann , Markus Fockel ,
and Hendrik Eikerling

Safe & Secure IoT Systems, Fraunhofer IEM, Paderborn, Germany
{roman.trentinaglia,sven.merschjohann,markus.fockel,

hendrik.eikerling}@iem.fraunhofer.de

Abstract. [Context and motivation] Cyber-physical systems, like
modern cars and industrial automation systems, are highly connected
and complex. [Question/problem] Their various interconnections open
interfaces for attackers, and their complexity increases the risk of unde-
tected security vulnerabilities. Hence, an important part of requirements
engineering is threat modeling. It is a means to elicit security assets,
goals, and assumptions, and to derive required security controls. Effec-
tive threat modeling needs a systematic workshop setup. [Principal
ideas/results] In this paper, we report our experiences and lessons
learned from threat modeling workshops that we conducted with indus-
try partners from the domains of industrial automation, health care,
smart home, and automotive. [Contribution] In conclusion, we derive
a set of open challenges.

Keywords: threat modeling · STRIDE · requirements elicitation

1 Introduction

Cyber-physical systems are highly connected and complex. Automotive systems
for autonomous driving use a large variety of sensors, car-to-X communication,
and high-performance control units to determine the current driving situation
and plan next actions in real-time. In industrial automation, systems become
more and more sophisticated and connected as part of Industry 4.0. Industrial
controls are connected to the cloud for data analytics (e.g., for condition moni-
toring) and can be updated and extended via app stores.

The increasing number of communication interfaces open new doors for cyber
attacks, and the growing complexity increases the risk of undetected security
vulnerabilities. Hence, an important part of requirements engineering is threat
modeling [7]. It is a means to elicit security assets and goals, determine threats
to the system and assess their risk, and to derive security assumptions and
requirements (i.e., required security controls).

Xiong and Lagerström published a systematic literature review on threat mod-
eling [13]. They concluded that there is no common definition of threat modeling
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 351–365, 2023.
https://doi.org/10.1007/978-3-031-29786-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29786-1_25&domain=pdf
http://orcid.org/0000-0001-9728-4991
http://orcid.org/0000-0001-9133-3350
http://orcid.org/0000-0002-1269-0702
http://orcid.org/0000-0002-9007-9896
https://doi.org/10.1007/978-3-031-29786-1_25

352 R. Trentinaglia et al.

and most literature they found used a manual threat modeling approach. Yskout
et al. assessed the state of practice in the field of threat modeling by interview-
ing threat modeling practitioners [14]. They conclude that threat modeling, as an
engineering discipline, is currently at a low level of maturity, mostly performing
“whiteboard hacking”.

We believe that effective threat modeling needs a systematic workshop setup.
In this paper, we report our observations and lessons learned from systematic
threat modeling workshops that we conducted with industry partners from the
domains of industrial automation, health care, smart home, and automotive.

Our threat modeling workshops are based on STRIDE [7]. It is a mnemonic
representing its six categories of threats, and a method to find threats from these
categories in an architectural diagram. We explain the details of our workshop
setup in Sect. 2. An extended version of our method with development process
integration was certified for compliance with the industrial automation security
standard IEC 62443 and presented in [2].

Considering STRIDE, Scandariato et al. performed a descriptive study and
Tuma and Scandariato did a comparative study [5,9]. Both papers used univer-
sity students as study participants that were provided with documentation about
a system that was used for threat modeling. In contrast to that, we applied our
STRIDE-based method in industry-funded workshops to identify threats and
security requirements for commercially used products. All participants (except
us) were stakeholders for the product (e.g., product owners, software architects,
developers). Examples of the analyzed products are an industrial control system,
a system assisting in surgeries, and a cloud backend used by smart home appli-
ances. All in all, this report is based on the observations from threat modeling
six products from the four aforementioned domains.

This paper is structured as follows. In Sect. 2, we explain the setup of our
threat modeling workshops. Section 3 describes central observations that we
made when conducting the workshops. In Sect. 4, we describe the lessons we
learned from those observations. Section 5 describes threats to validity of this
experience report. Section 6 concludes the paper with a set of open challenges
that we derived from the lessons learned.

2 Setup of Our Threat Modeling Workshops

An introduction to our method can be found in [1]. In this section, we explain
the details needed to understand our observations and lessons learned.

Our threat modeling workshops are based on STRIDE [7]. It is a mnemonic
representing six categories of threats spoofing, tampering, repudiation, informa-
tion disclosure, denial of service, and elevation of privilege. It is also a method to
find threats from these categories in an architectural description of the system
of interest (SoI), typically a data flow diagram (DFD). A matrix defines which
STRIDE category is of prior applicability to which element of a DFD.

There are tools that support in the application of STRIDE. We typically
use the Microsoft Threat Modeling Tool (TMT)1 in our workshops. For a list
1 https://aka.ms/threatmodelingtool.

https://aka.ms/threatmodelingtool

Eliciting Security Requirements – An Experience Report 353

Fig. 1. Microsoft Threat Modeling Tool

of threat modeling tools see [6]. Figure 1 shows a screenshot of the tool. The
diagram shows a DFD representing a web server that interacts with an SQL
database and a human user. Below the diagram, possible threats are listed. The
first threat is relevant to the highlighted elements in the diagram, specifically,
to the data flow from the human user to the web server. It specifies that the
human user could be spoofed, i.e., an attacker could try to access the web server
pretending to be a valid user.

In the following, our workshop setup is described in more detail. For prepa-
ration, the customer has to select the participants for the workshop. We rec-
ommend not more than six participants, to enable discussions but nevertheless
keep focused enough within the given time frame. Typically, our customers do
not have their own security experts. Hence, they hire us to fulfill that role. The
customer’s participants should cover relevant stakeholders of the SoI, e.g., devel-
opers, system and software architects, product owners, quality assurance, risk
management and technical support. From our side, the workshops are moder-
ated by two security requirements engineers to share the work of giving hints
on possible attacks and countermeasures, moderating discussions, operating the
tool, taking notes, and time-keeping. The workshops are typically constrained to
eight hours, divided in two four-hour sessions on separate days. The workshops
can be performed offline, on-site at the customer’s premises, or online using
conferencing tools like Microsoft Teams.

354 R. Trentinaglia et al.

During the workshop we guide, teach, and moderate the participants. We
use the TMT, start with an empty model, and enter information step by step as
provided by the participants. The workshop is structured in three phases:

1. Specifying the System and Determining its Security Context
In the first phase, we start modeling the customer’s SoI as a data flow diagram.
For this purpose, we give an introduction to data flow diagrams beforehand,
so that the participants understand the notation. Then we create the DFD
based on the information given by the participants. An important part of this
is the elicitation of security assumptions about the environment of the SoI,
the so-called security context. This comprises assumptions/requirements of
security measures that are in place where the SoI is deployed (e.g., operating
system security-updates are applied regularly).

2. Determining Assets and Security Objectives
After finishing the DFD and security context, in the second phase, we identify
the assets and security objectives of the SoI and its assets. The assets are
directly annotated in the DFD, so that it is clear where they are located
within the SoI. The security objectives are noted down for the complete SoI.

3. Identifying Threats and Countermeasures and Assessing Risk
In the third phase, we identify threats and possible countermeasures and
assess each threat’s risk. For the initial identification of threats, we use the
threat generation feature of the TMT which follows the basic STRIDE rules
(i.e., matrix mentioned above) to generate a list of potential threats for each
element of the DFD. Typically, the list of generated potential threats is quite
long (more than 100 threats), so that we first explain the different types of
generated threats and then pick one threat for further examination. For the
selected threat, we discuss whether it is truly applicable to the SoI, and, if
so, identify possible countermeasures and note them down. These counter-
measures may either already exist or form security requirements yet to be
realized. An additional important step is manually adding further threats to
the SoI that come up during the discussions.
Finally, the participants determine the risk of the selected threat by playing
protection poker [11]. Protection poker is a variant of planning poker, in which
every participant is asked to play simultaneously a numbered card for assess-
ing the risk. If differing card numbers are played among the participants,
the ones with the highest and lowest numbers played explain their reasoning.
Then a next round is played in which again everybody plays a card. This
procedure is repeated until consensus for the risk value is achieved. In this
way, first, the ease of an attack is determined, and afterward, the impact of
a successful attack. Both values are then multiplied to a single risk value.
Afterward, the next threat is selected and the steps repeated until either all
threats were considered or the allotted time for the workshop is used up.

After the workshop is finished, we provide the customer with the threat model
created during the workshop. In addition, we create a report listing the results,
especially to highlight top priority (high risk) threats, security assumptions, and
security requirements. These materials can then be used by the customer to

Eliciting Security Requirements – An Experience Report 355

continue with their secure development of the SoI. Furthermore, they also give
a head start on performing threat analysis for another system on their own.

3 Observations

In the following, we describe our observations from conducting the threat mod-
eling workshops as described in Sect. 2. These observations serve as the basis for
lessons learned, which we present in Sect. 4.

In general, we have found that threat modeling is a lightweight activity and
can be applied in any development process, be it classic V-model or agile. We
have noticed positively that our participants have always been highly motivated,
worked well together, and had many valuable discussions concerning the SoI’s
security. The discussions were often sparked by the DFD or by the generated
potential threats. Especially for the generated threats, as intended, the partic-
ipants carefully evaluated whether or not they were relevant to their SoI. If
a threat was deemed relevant, the participants quickly got into brainstorming
potential countermeasures. Accordingly, the workshops led to fruitful results
although most participants were no security experts. In fact, some participants
told us afterward, that they regularly think in STRIDE categories, because the
workshop raised their security awareness and was learning-by-doing.

Despite these positive observations, we have also made the following eight
observations that we want to improve upon.

OB1: STRIDE results in many fine-grained threats
The STRIDE approach works iteratively along the DFD. That means, for
each element of the diagram a set of possible threats is analyzed. According
to our observations, this local focus results in the threats (and corresponding
countermeasures) being rather fine-grained. Correspondingly, depending on
the size of the underlying data flow diagram, STRIDE often leads to a huge
amount of threats (also known as threat explosion [10]). For example, for an
extensive DFD (with more than 20 elements), the TMT generated more than
400 threat candidates during one of our workshops.
OB2: Threat models can get large and cluttered
During our workshops we observed that, depending on the analyzed SoI,
threat models can get quite large. It can be difficult to set the right scope
and level of detail for a workshop so that the outcome remains manageable.
We further noticed that the diagram canvas in the TMT is constrained in
size. Therefore, one is limited in the number of diagram elements that can be
specified in a well-arranged way. This is especially problematic when larger
DFDs (exceeding more than 20 elements) are to be specified, as one has to
scroll between different parts of the diagram. Therefore, when the models get
big, it might be necessary to split the content. While the TMT actually does
offer the user the possibility to create additional diagrams, these are displayed
in a separate pane. The DFD elements are thereby not linked in any way
(except by name) and also the generated threat candidates are completely

356 R. Trentinaglia et al.

separate. In summary, we did not find a good use case for having different
diagrams in one model in the TMT.
OB3: Finding suitable countermeasures is not a trivial task
The generated potential threats often only include some general advice on
possible countermeasures, e.g., using HTTPS instead of HTTP. However, typ-
ically, threats can be mitigated in several different ways. The effects that the
introduction of a new countermeasure has on the system have to be figured
out by the users of the TMT on their own. Especially when countermea-
sures require architectural changes of the system, this is difficult for the users
to foresee. As an example, to introduce an authentication scheme, typically
at least one new component is required, that handles the authentication and
management of the valid users. Apart from these architectural effects of coun-
termeasures, often trade-offs with other requirements of the system need to
be made, e.g., between usability and security objectives. In this regard, the
TMT only gives hints at which technologies should be looked at for possible
countermeasures, while leaving the users with the difficult decisions mostly
on their own.
OB4: The modeling of chosen countermeasures, assets, security
objectives, and assumptions is not explicitly supported by the TMT
As part of our workshops, we additionally determine aspects like the security
context, assets and security objectives for the SoI, as well as countermeasures
for the identified threats (cf. Sect. 2). While the TMT provides the ability
to add custom text fields to diagram elements, there is no way to include
these aspects in a clearly structured way in the model. As a result, it can
easily happen that assets or assumptions get overlooked in the text fields and
are forgotten. Keeping these plain text fields consistent with the model also
requires manual effort. In addition, the use of plain text fields to describe
countermeasures makes it difficult to adequately analyze whether a counter-
measure introduces new threats. For example, a repudiation threat may be
mitigated by a logging database, but this database itself may introduce a new
threat of logs being manipulated.
OB5: Aggregating risk metrics is a repetitive and tedious task
After determining a threat in our workshop, the next important step is its
risk assessment. For this purpose, we play protection poker for determining
the two metrics impact and ease of the attack. The risk is then calculated
by multiplying these two determined values. This method has the benefit
that it can be easily applied by our workshop participants, who are mostly
not security experts. For this purpose, we had to add additional fields and
calculate the resulting risk value manually, as the TMT does not provide any
risk assessment or automatic calculation feature. However, the resulting risk
calculation has to be done for each identified threat.
OB6: The participants identify additional system-specific threats
After we modeled the SoI using data flow diagrams, the TMT generates many
potential threats. These threats serve as a starting point, as system-specific
threats can only be identified by the participants as the stakeholder of the
SoI. For this purpose, the TMT provides the important functionality to add

Eliciting Security Requirements – An Experience Report 357

custom threats to the list of threats. However, a function to annotate these
custom threats to specific DFD elements would be helpful, in order to pinpoint
the location of the threat within the SoI. At this point, also often discussion
arises to which STRIDE category the threat should be allocated. The fact
that one threat can be categorized into multiple categories is the nature of
STRIDE and therefore intended, though it is a common point of confusion
when the participants are not familiar with STRIDE yet.
OB7: The participants want to integrate threat modeling into their
processes
Typically, after the workshop, the participants want to integrate threat mod-
eling as a regular activity into their software development processes. For this
purpose, they want to properly document the analyzed threats, their risks,
and derived security requirements (i.e., countermeasures). They require the
export of the threat modeling results, so that it can be used in their existing
processes and tools for requirements management and/or application life-
cycle management (RM/ALM). The TMT can only export the threats as
CSV or generate an HTML report. However, this is not sufficient, because
when changes are made, also the threat model, and as such, the threats are
updated. This results in the problem of keeping the threats, which are now
spread across different tools, manually up to date. This is also the case for
the other way around, i.e., when changes are made to the system, the threat
model needs to be updated. There is currently no tool-support by the TMT
to propagate detected system design changes made in other tools back to the
data flow diagram.
OB8: Safety-relevant elements are important for the risk assessment
of threats
In the automotive and automation domain, we observed that in order to assess
the risks of the threats, it is important to consider the involved safety aspects
of the SoI. However, the TMT does not provide a way for integrating safety
concerns into the model. This means, that the participants had to remember
and check each time, whether the currently focused threat can also have
consequences on the system’s safety.

We think, that especially these eight observations show needs for improve-
ment in threat modeling methods, tools, and processes. We also believe that we
are not alone with these observations in threat modeling (cf. [14]). We describe
in the next section, what we learned from these observations.

4 Lessons Learned

During our threat modeling workshops we observed strengths of the applied
methodology as well as shortcomings (see Sect. 3). The observations serve as a
neutral basis on which we can identify and formulate underlying problems and
derive lessons learned. We list these nine learnings below.

358 R. Trentinaglia et al.

LL1: A threat model is not a security concept
In a security concept the engineers state how they achieve and maintain the
desired or required level of security of their system [4]. It therefore includes not
only the threats of the system, but also which security objectives and strategies
the engineers pursue, which countermeasures were taken, as well as the under-
lying assumptions on the SoI and its environment. While the TMT helps to
identify recurring threats for common components, it currently does not allow
to model security objectives, countermeasures, and assumptions explicitly as
stand-alone model elements (cf. OB4). Encoding these aspects in the generic
text fields provided by the tool complicates their traceability and requires man-
ual maintenance. Furthermore, extensive manual effort is needed to transform
the text field contents into a full security concept. In addition, this proce-
dure makes it easy to overlook the assumptions and countermeasures stored
in the subtle text fields, so they may not be considered when the development
of the system progresses. To address these shortcomings, better tool support
is needed that allows to explicitly model and trace above mentioned design
aspects thereby reducing the need for manual maintenance.
LL2: The SoI needs to be developed with security goals in mind
STRIDE leads to an extensive list of fine-grained potential threats for con-
crete DFD elements (OB1). Consequently, it leads to countermeasures that
are locally constrained with a focus only on preventing a specific correspond-
ing threat. For example, to prevent manipulation of data on a specific data
flow an integrity check is performed. However, to eradicate threats it may be
preferable to improve the architecture instead of just fixing threat by threat.
For example, the SoI may be redesigned to prevent an attacker from accessing
critical parts of the system at all. In this case STRIDE should be performed
in combination with a goal-oriented approach. Breaking down broad secu-
rity goals into smaller sub-goals based on mitigation strategies (e.g., network
segmentation) further helps to derive concrete countermeasures more easily.
LL3: Abstracting the analyzed SoI and prioritizing the threat can-
didates is necessary
Due to the limited modeling space (OB2) and the high number of threat can-
didates generated for large DFDs (OB1), it is important to keep the DFDs
as compact as possible from the beginning. The threat model must remain
manageable, otherwise the chance of errors increases and things can easily be
overlooked. One way to achieve this is to conceptually divide the system into
different isolated parts that can be analyzed more independently. In addi-
tion, the user is responsible for finding the right level of abstraction to keep
the model manageable. Therefore, to find meaningful threats, the user has to
focus on the most important parts of the system, without getting too detailed,
but also not staying too general either. Currently, the TMT does not provide
any built-in tool support to indicate different levels of abstraction in the same
DFD. Therefore, if more detailed descriptions of certain parts of the SoI are
needed, one has to create separate sub-diagrams manually.

Eliciting Security Requirements – An Experience Report 359

Nevertheless, even for smaller DFDs, the number of generated threats will
remain rather high, including several false positives. To make the participants
aware of false positives, we explain how the TMT generates threats (i.e.,
template-based) and that false positives can therefore occur. Since we aim to
explain the basic STRIDE methodology to the participants, the goal of our
workshop is not to analyze all threat candidates in detail. Therefore it is also
crucial to prioritize the generated threat candidates somehow. To analyze
examples of potential threats, we pick out suggestions for threats that we
think are potentially relevant to the SoI. Since the participants shall later
also be able to find relevant threats from the TMT generated suggestions on
their own, the participants are then asked to evaluate these selected threats
themselves. However, participants are also free to choose other threats from
the list or propose new (user-defined) threats. Letting the participants first
select the most relevant threats for each STRIDE category intuitively and
then determine their risk using a structured approach (cf. Sect. 2) helped
them to get a better feeling for the current level of security of their system.
LL4: Guidance in coming up with countermeasures for the identi-
fied threats is needed
When the threats are identified, the next crucial step in making the sys-
tem more secure is the implementation of suitable countermeasures. However,
deciding on the best fitting countermeasures is a daunting task for the partic-
ipants (OB3) as they are mostly no security experts. As such, it is necessary
to guide the participants in choosing fitting countermeasures that on the one
hand mitigate sufficiently the identified threats and ensure that their security
objective can be accomplished, while on the other hand also managing the
other system’s requirements. Especially, when architectural changes to the
system are necessary, the participants need suggestions on how to proceed
best. For this purpose, we first explain different possible countermeasures
that might be employed in general. Afterwards, we discuss the participants’
requirements and find a suitable solution for their product.
LL5: One goal of the workshop should be to transfer knowledge
Within the limited time of our workshops it is not possible to address all of
the many potential threats (OB1). Therefore, one goal of the workshop should
be to transfer knowledge to enable the participants to continue working on
the threat model on their own. This includes understanding the data flow
diagram, the different security objectives, STRIDE, what possible threats
might be, as well as the risk assessment.
LL6: Tool-support is needed to exchange threats and security
requirements with other tools
In a security by design process where security is considered throughout the
whole development lifecycle, results from a threat modeling session (e.g.,
found threats) need to be utilized in further development steps. Especially
if threat modeling is performed in early stages of the development, exchang-
ing threat modeling results with RM/ALM tools is needed to trace security
requirements (OB4, OB5). Unfortunately, the TMT does not provide any pos-
sibility to export such threat model results other than storing the whole model

360 R. Trentinaglia et al.

in an XML-based file format or exporting a list of threats. We found that
being able to reuse these artifacts in their existing development toolchain is
important to the participants and increases the motivation to perform threat
modeling continuously (OB7).
LL7: When the system changes, the threat model has to be updated
manually
Keeping the threat model up-to-date is crucial to continuously evaluate the
level of security of the system and find new threats when the system is changed.
Especially if threat modeling is performed in early stages of the development,
the system design is subject to change and changes must be reflected and ver-
sioned in the threat model. However, there currently is no tool-support by the
TMT to propagate detected system design changes made in other tools back to
the data flow diagram (OB7). Therefore, the threat model has to be kept up-to-
date manually resulting in a high effort and a high susceptibility to human error.
To enable continuous threat modeling, for example in DevOps environments,
support for continuous integration is needed.
LL8: Domain-specifics are important for threat modeling
The domains involving cyber-physical systems, e.g., automotive and automa-
tion, are typically heavily standardized. This means that specific processes
need to be adhered to and it needs to be shown that their process matches
to the standard. This is also true for the process of threat modeling, e.g., the
IEC 62443 requires that the system is partitioned into zones and conduits.
Another requirement is the mandatory inclusion of a specific set of given coun-
termeasures. Some of the domain-specific requirements can be followed using
the TMT, as we noticed in OB4, this is still only implicit and there is no support
that helps the users in proving compliance. Still, the TMT is a helpful tool in
fulfilling the demanded threat analysis as also new threats can be added (OB6).
However, it cannot fulfill them completely on its own, but it can be well inte-
grated in a IEC 62443 compliant threat modeling process [2].
LL9: Integrated safety and security analysis would be beneficial
When the risk of threats is assessed, we observed (OB8) that it is important to
think about what kind of hazards a threat can lead to, especially in the auto-
motive and automation domain. Typically, in these domains a hazard and risk
analysis has to be performed, the results of which can be used for guiding the
threats’ impact assessment. Whether a threat can lead to hazards concerning
the SoI’s safety is one of the biggest driving forces behind determining the pos-
sible impact of the threat. Therefore, an integrated safety and security analysis
would be beneficial to determine the safety & security of the SoI.

5 Threats to Validity

The observations and learnings shared in this report are purely based on the
authors’ experiences in threat modeling workshops conducted in various organi-
zations and at various times. These workshops were not planned as controlled
experiments or case study to test certain hypotheses about threat modeling

Eliciting Security Requirements – An Experience Report 361

methodologies, but rather to enable a group of participants to evaluate the
security of their software systems. Therefore, our goal is not to claim univer-
sal applicability of our findings, but to simply provide our experiences. This
section provides an overview of the threats to validity, which may have influ-
enced the results reported in this paper, loosely based on the threats to validity
laid out by Wohlin et al. [12].

In terms of conclusion validity, multiple factors could influence the results we
have seen within our threat modeling workshops and thus the lessons we heave
derived from the observations. First of all, with six conducted workshops, the
statistical power is very low and does not allow for statistical analysis, which we
therefore cannot provide. In addition, the observations are collected by the mod-
erators of the workshops, i.e., the authors of this paper, who may be biased and
could have “fished” for certain results by making false observations. This can-
not be fully mitigated, even though through our collaborative process, egregious
lies would have been detected. Since no formal measures were taken during the
workshops, there are no threats related to their reliability. However, there could
be differences in the conduction of the workshops, depending on the specific
settings, as well as random circumstances that altered the observations made
during the workshops.

The internal validity is concerned with influences that affect the outcome but
are not known to the researchers. In our case, we do not know the full history
and experiences with threat modeling of the participants, which influences their
behavior in the workshops. Additionally, the length of the workshops could lead
to tiring of the participants and thus the threat of “maturation”, resulting in
negative behavior and adverse effects on the results. The selection of the par-
ticipants also plays a role in the validity of the observations, since volunteering
participants are usually more motivated and have a positive attitude towards
the workshops.

Construct validity deals with the generalizability of an experiment with
regards to a theory. Since we did not design the workshops to test a specific
hypotheses, this aspect is not completely relevant. However, the social threat
of “experimenter expectancies” could be relevant, since we may have expected
certain behaviors from the participants and thus were more likely to observe
them.

For the external validity or generalizability to industrial practice, there are
a number of threats that are relevant to our experience report. First of all, our
subjects were all experienced in the domain of cyber-physical systems, which
means they have a certain attitude towards the threats found in the threat model
and, e.g., the impact towards safety. This safety-mindedness may not be present
in other groups performing threat modeling, which impacts the generalizability
of our lessons learned. Additionally, the setting and design of our workshop could
have influenced certain observations. For example, we found several inadequacies
with the TMT, which could exacerbate a negative attitude, if a participant had
experiences with different tools that may lack these shortcomings.

362 R. Trentinaglia et al.

All in all, we acknowledge that the observations and the derived lessons
learned are subject to certain threats to their validity. However, they come from
real-world threat modeling workshops and may serve as a guide to improve
ones approach to threat modeling, the current tooling landscape, and broaden
the view of threat modeling practitioners by suggesting the inclusion of safety
impact in addition to security aspects.

6 Conclusion

In this paper, we reported our observations and lessons learned from systematic
STRIDE-based threat modeling workshops that we conducted with industry
partners. We see threat modeling as a must for eliciting security requirements,
and our workshops lead to fruitful results. Nevertheless, our observations under-
pin the conclusion of Yskout et al. that there are many open challenges [14],
including a need for better tool-support also claimed by Xiong and Lagerström
[13]. In more detail, we see the following challenges that we plan to work on in
the future.

Comprehensible Goal-Based Threat Modeling
A major open challenge we see in threat modeling is that the subsequent com-
prehensibility of decisions (e.g., why a certain countermeasure was chosen) made
during threat modeling is limited. These decisions also include the underlying
assumptions and pursued goals and strategies on which the decisions can be
justified. On the one hand, these limitations can be attributed to the lack of
modeling abilities due to limited tool support (LL1). On the other hand, we also
recognized methodological improvements, e.g. that a goal-based threat model-
ing approach can be beneficial (LL2). Engineers should thereby not only be
able to model and outline goals and strategies in the data flow diagram, but
goals should also actively guide the design process. We are currently focusing
on improving the threat modeling tool support to address the shortcomings of
the TMT in terms of missing modeling capabilities and to make threat modeling
more structured and comprehensible.

Modular and Reusable Threat Models
Because threat modeling is an interactive process in which the exchange between
the involved participants is very important, it is usually carried out manually
instead of automatically. In order to support this manual work and to reduce the
complexity of threat models (LL3), the user should be able to modularize the
DFD, identify and isolate recurring structures, and save them for later re-use.
To support the reuse and modularization of data flow diagram structures, our
objective is to build advanced tool support. This objective integrates well with
the proposed goal-based threat modeling approach (see above) using refined goals
as a basis for stored recurring diagram structures (i.e., storing diagram patterns
according to the security goal they achieve). We thereby want to build up on
the approach presented in [8] and put a stronger focus on data flow diagrams.

Eliciting Security Requirements – An Experience Report 363

Suggestions for Countermeasures and Architectural Changes
Choosing good fitting countermeasures is crucial not only for the security but
also for the architectural design and thus the future maintainability of the devel-
oped software. However, we have learned that the participants, who are typi-
cally no security experts but software developers, are overwhelmed in deciding
what countermeasure to choose (LL4). Especially, judging the implications on
the architecture when choosing a new countermeasure is very difficult for non-
security-experts. In order to ease the process in determining the best fitting coun-
termeasures and help the participants to build up necessary knowledge (LL5),
we are working on automatically suggesting fitting countermeasures including
comprehensible suggestions on necessary architectural changes to the system,
which can additionally be automatically applied.

Continuous Threat Modeling
In order for threat modeling to be an effective part of a modern, continuous
software development process, its results have to be used in other steps of the
process, such as software design, so that countermeasures can be traced and
implemented in the software (LL6). While there is a proposal for an open, stan-
dardized format for exchanging threat model information called Open Threat
Model (OTM)2, released by IriusRisk in 2022, no widely agreed upon standard
exists for this purpose. Therefore, one challenge is to enable exchangeability of
information between threat modeling tools and other parts of the software devel-
opment tool chain, to allow for the forward integration of threat information into
the development process. Conversely, changes in the software, such as realized
countermeasures for identified threats, are not automatically represented in the
threat model. This causes a lot of manual effort to keep the threat model up
to date (LL7). As future work, we aim to develop a mapping between software
and threat model, so that it can be kept synchronized with the actual software
without the need for manual interference.

Domain Specific Threat Modeling Including Safety
Threat modeling is important for the security of systems, which is more and more
recognized by other domains than software engineering as well. This results in
standards requiring threat modeling as part of their standard-compliant devel-
opment process [2]. However, each standard adapts these threat modeling pro-
cesses with their own slight adaptations and additional concepts, e.g., the zones
and conduits in the IEC 62443, which need to be properly handled in these
domains (4). A second aspect with the involvement of cyber-physical systems is
that safety-relevant components need to be identified for assessing the impact of
threats (4). In a recent project with BMW, we developed an integrated safety
and security analysis method that supports the analysis of correlations between
attacks and hazards on an architectural level [3]. Currently, we simplify the
method and develop a tool in order to allow small and medium sized compa-
nies an easier integration into their processes. In the future, we plan to adapt
this simplified method to specific domains, e.g., the automotive and automation
domain.

2 https://github.com/iriusrisk/OpenThreatModel.

https://github.com/iriusrisk/OpenThreatModel

364 R. Trentinaglia et al.

Extending Results to Other Domains
Our workshops have been conducted with industry partners working in the
domain of cyber-physical systems only. Therefore, our observations are also lim-
ited to this domain. A potential topic for future work is to extend the variety
of domains and to also conduct these kind of workshops with industry partners
from other domains (e.g., web development, mobile applications).

Acknowledgements. This research has been funded by the Federal Ministry of Edu-
cation and Research (BMBF) under grant 01IS17047 as part of the Software Campus
program.

References

1. Fockel, M., Merschjohann, S., Fazal-Baqaie, M.: Threat analysis in practice – sys-
tematically deriving security requirements. In: Kuhrmann, M., et al. (eds.) PRO-
FES 2018. LNCS, vol. 11271, pp. 355–358. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03673-7 25

2. Fockel, M., Merschjohann, S., Fazal-Baqaie, M., Förder, T., Hausmann, S.,
Waldeck, B.: Designing and integrating IEC 62443 compliant threat analysis. In:
Walker, A., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2019. CCIS, vol. 1060,
pp. 57–69. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28005-5 5

3. Fockel., M., Schubert., D., Trentinaglia., R., Schulz., H., Kirmair., W.: Semi-
automatic integrated safety and security analysis for automotive systems. In: Pro-
ceedings of the 10th International Conference on Model-Driven Engineering and
Software Development - MODELSWARD 2022, pp. 147–154. INSTICC, SciTePress
(2022)

4. ISO/SAE: ISO/SAE DIS 21434 Road vehicles - Cybersecurity engineering. Stan-
dard 2020. Automotive Security Standard (2020)

5. Scandariato, R., Wuyts, K., Joosen, W.: A descriptive study of microsoft’s threat
modeling technique. Requir. Eng. 20(2), 163–180 (2015)

6. Shi, Z., Graffi, K., Starobinski, D., Matyunin, N.: Threat modeling tools: a taxon-
omy. IEEE Secur. Priv. 20(4), 29–39 (2022)

7. Shostack, A.: Threat Modeling: Designing for Security. Wiley (2014)
8. Trentinaglia, R.: Deriving model-based safety and security assurance cases from

design rationale of countermeasure patterns. In: Proceedings of the 25th Interna-
tional Conference on Model Driven Engineering Languages and Systems: Compan-
ion Proceedings, pp. 164–169 (2022)

9. Tuma, K., Scandariato, R.: Two architectural threat analysis techniques compared.
In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp.
347–363. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00761-4 23

10. Tuma, K., Scandariato, R., Widman, M., Sandberg, C.: Towards security threats
that matter. In: Katsikas, S.K., et al. (eds.) CyberICPS/SECPRE -2017. LNCS,
vol. 10683, pp. 47–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72817-9 4

11. Williams, L., Meneely, A., Shipley, G.: Protection poker: the new software security
“game”. IEEE Secur. Priv. 8(3), 14–20 (2010)

12. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-030-03673-7_25
https://doi.org/10.1007/978-3-030-03673-7_25
https://doi.org/10.1007/978-3-030-28005-5_5
https://doi.org/10.1007/978-3-030-00761-4_23
https://doi.org/10.1007/978-3-319-72817-9_4
https://doi.org/10.1007/978-3-319-72817-9_4
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Eliciting Security Requirements – An Experience Report 365

13. Xiong, W., Lagerström, R.: Threat modeling - a systematic literature review. Com-
put. Secur. 84, 53–69 (2019)

14. Yskout, K., Heyman, T., Van Landuyt, D., Sion, L., Wuyts, K., Joosen, W.: Threat
modeling: from infancy to maturity. In: Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering: New Ideas and Emerging Results,
ICSE-NIER 2020, pp. 9–12. Association for Computing Machinery, New York, NY,
USA (2020)

Author Index

A
Abbas, Muhammad 105
Alwidian, Sanaa 65
Amiri, Seyed Mahdi 39

B
Bajraktari, Adrian 245
Barbosa, Larissa 3
Bashir, Sarmad 105
Bennaceur, Amel 324
Berry, Daniel M. 75
Binder, Michelle 245
Bohlin, Markus 105
Borg, Markus 189
Brinkkemper, Sjaak 122

C
Condori-Fernandez, Nelly 159

D
Dalpiaz, Fabiano 122
de Bondt, Xavier 122
Dhakla, Abhishek 75
Dinakaran, Shruthi 206
Dutle, Aaron 295

E
Eber, Lukas 21
Eikerling, Hendrik 351
Enoiu, Eduard Paul 105
Erdogan, Murat 233

F
Farrell, Marie 179
Fischer, Ricarda Anna-Lena 272
Fockel, Markus 351

Franch, Xavier 223
Freire, Sávio 3

G
Gay, Gregory 189
Gomes, Felipe 3
Grubb, Alicia M. 56
Guzman, Emitza 272

H
Habibullah, Khan Mohammad 189
Hassani, Shabnam 87
Hassett, Diane 324
Hatling, Morten 309
Hauff, Nico 21
Henkel, Elisabeth 21
Henriksson, Jens 233
Heyn, Hans-Martin 189, 206
Horkoff, Jennifer 189

J
Jaskolka, Jason 65
Jaxing, Johan 233
Jedlitschka, Andreas 223
Jørgensen, Jens Bæk 337

K
Karras, Oliver 39
Katis, Andreas 295
Knauss, Alessia 189
Knauss, Eric 189, 206

L
Langenfeld, Vincent 21
Li, Jing 189
Limaylla-Lunarejo, María-Isabel 159
Lindberg, Pernilla 105
Luaces, Miguel R. 159

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. Ferrari and B. Penzenstadler (Eds.): REFSQ 2023, LNCS 13975, pp. 367–368, 2023.
https://doi.org/10.1007/978-3-031-29786-1

https://doi.org/10.1007/978-3-031-29786-1

368 Author Index

Lucena, Márcia 75
Luitel, Dipeeka 87

M
Maciel, Rita S. P. 3
Malleswaran, Iswarya 206
Martínez-Fernández, Silverio 223
Mavridou, Anastasia 179, 295
Mendes, Thiago Souto 3
Mendonça, Manoel 3
Merschjohann, Sven 351
Mosquera, David 140
Mygind, Lotte 337

N
Nagel, Lukas 39
Nuseibeh, Bashar 324

O
Örsmark, Ola 233

P
Paech, Barbara 283
Pastor, Oscar 140
Patkar, Nitish 262
Podelski, Andreas 21
Prechelt, Lutz 337
Pressburger, Tom 295

R
Radeck, Leon 283
Reges, Galdir 3
Ruiz, Marcela 140

S
Saadatmand, Mehrdad 105
Sabetzadeh, Mehrdad 87
Sakhnini, Victoria 75
Schneider, Kurt 39
Schumann, Johann 179
Seyff, Norbert 262
Sivencrona, Håkan 189
Spielberger, Jürgen 140
Spijkman, Tjerk 122
Spínola, Rodrigo 3
Spoletini, Paola 56
Sporsem, Tor 309
Stol, Klaas-Jan 309

T
Tabbassum, Saliha 272
Thorsén, Anders 233
Tkalich, Anastasiia 309
Toftås, Mathias Örtenberg 233
Trentinaglia, Roman 351

U
Ursing, Stig 233

V
Vogelsang, Andreas 245
Vogt, Annika 245

W
Warg, Fredrik 233

	 Preface
	 Organization
	 Contents
	Requirements Communication and Conceptualization
	Requirements Engineering Issues Experienced by Software Practitioners: A Study on Stack Exchange
	1 Introduction
	2 Related Work
	3 Research Strategy
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 RQ1: What are the Main RE Issues Discussed by Software Engineers?
	4.2 RQ2: What are the Causes that Lead to RE Issues?
	4.3 RQ3: What are the Effects of RE Issues?
	4.4 RQ4: What Solutions Have Been Considered?

	5 Discussion
	5.1 Relationship Between Requirements Phases, Issues, and Solutions
	5.2 Comparison to Related Work

	6 Threats to Validity
	7 Concluding Remarks
	References

	An Empirical Study of the Intuitive Understanding of a Formal Pattern Language
	1 Introduction
	2 Hanfor Pattern Language
	3 Empirical Study
	3.1 Goal and Research Questions
	3.2 Subject Selection
	3.3 Object Selection
	3.4 Survey Design

	4 Results
	5 Discussion
	6 Threats to Validity
	6.1 Internal Validity
	6.2 Construct Validity
	6.3 External Validity

	7 Related Work
	8 Conclusion
	References

	Supporting Shared Understanding in Asynchronous Communication Contexts
	1 Introduction
	2 Related Work
	3 Concepts for Supporting Shared Understanding
	4 Implementation of Concepts
	5 Experiment
	5.1 Experiment Design

	6 Results
	7 Threats to Validity
	8 Discussion
	9 Conclusion
	References

	Bringing Stakeholders Along for the Ride: Towards Supporting Intentional Decisions in Software Evolution
	1 Introduction and Motivation
	2 Defining Intentionality
	3 ING-RE: Supporting Intentionality
	4 Research Agenda
	5 Summary
	References

	Understanding the Role of Human-Related Factors in Security Requirements Elicitation
	1 Introduction
	2 Related Work
	3 Proposed Framework
	4 Illustrative Example
	5 Discussion and Concluding Remarks
	References

	Scope Determined (D) and Scope Determining (G) Requirements: A New Categorization of Functional Requirements
	1 Introduction
	2 G and D Requirements
	3 Completion of Scope
	4 Observations and Implications
	5 Antecedent and Related Work
	6 Future Work and Long Term Goals
	7 Implications of Validation
	8 Conclusions
	References

	NLP and Machine Learning for AI
	Using Language Models for Enhancing the Completeness of Natural-Language Requirements
	1 Introduction
	2 Background
	3 Approach
	4 Evaluation
	4.1 Research Questions (RQs)
	4.2 Implementation and Availability
	4.3 Dataset
	4.4 Analysis Procedure
	4.5 Metrics
	4.6 Results
	4.7 Limitations and Validity Considerations

	5 Related Work
	6 Conclusion
	References

	Requirement or Not, That is the Question: A Case from the Railway Industry
	1 Introduction
	2 Related Work and Background
	3 Study Design
	3.1 Case Context
	3.2 Objective and Research Questions
	3.3 Data Collection
	3.4 Pipelines for Distinguishing Requirements
	3.5 Metrics for Evaluation
	3.6 Execution Procedure

	4 Results and Discussion
	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Summarization of Elicitation Conversations to Locate Requirements-Relevant Information
	1 Introduction
	2 Background
	3 REConSum: A Tool for Summarizing RE Conversations
	3.1 Problem Investigation and Solution Design Iterations
	3.2 Question Identification and Relevance Detection

	4 Evaluation
	4.1 Designing the Golden Standard
	4.2 REConSum Results

	5 Conclusions, Limitations, and Future Work
	References

	Ontology-Based Automatic Reasoning and NLP for Tracing Software Requirements into Models with the OntoTrace Tool
	1 Introduction
	2 Related Works
	3 Problem Scope
	3.1 Traceability Context: Tracing User Stories and EDG Models

	4 Evolving OntoTrace into OntoTraceV2.0
	4.1 Combining NLP and Ontology-Based Automatic Reasoning for Supporting Trace Generation Between User Stories and EDG Models

	5 Evaluating OntoTraceV2.0
	5.1 Experimental Design
	5.2 Procedure and Data Analysis
	5.3 Threats to Validity

	6 Conclusions and Future Work
	References

	Requirements Classification Using FastText and BETO in Spanish Documents
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Research Questions and Metrics
	3.2 Datasets
	3.3 fastText and BETO Models
	3.4 Research Method

	4 Experiments and Results
	4.1 FR/NFR Classification Using PROMISE NFR Dataset (RQ1/RQ2)
	4.2 Classification Performance Comparison Between Models Trained in Translated PROMISE and Original PROMISE (RQ3)
	4.3 Testing Trained Models on the Second Dataset (RQ4)

	5 Discussion
	6 Threats to Validity
	7 Conclusions
	References

	RE for Artificial Intelligence
	Exploring Requirements for Software that Learns: A Research Preview
	1 Introduction
	2 Requirements for Autonomous Systems
	3 ML Requirement Attributes and Characteristics
	3.1 Confidence, Criticality, and Risk Levels
	3.2 Accuracy as a Measure of Functional Correctness
	3.3 Achievement of Average Value
	3.4 Robustness
	3.5 Data-Driven Learning
	3.6 Quality Aspects

	4 Uncertainty in ML Requirements
	5 Conclusion, Limitations, and Future Work
	References

	Requirements Engineering for Automotive Perception Systems: An Interview Study
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	4.1 Operational Design Domain (ODD)
	4.2 Scenarios and Edge Cases
	4.3 Requirements Breakdown
	4.4 Traceability
	4.5 Requirements Specification

	5 Summary and Discussion
	5.1 Threats to Validity

	6 Conclusion
	References

	An Investigation of Challenges Encountered When Specifying Training Data and Runtime Monitors for Safety Critical ML Applications
	1 Introduction
	2 Research Method
	3 Results
	3.1 Answer to RQ1: Challenges Practitioners Experience When Specifying Training Data
	3.2 Answer to RQ2: Challenges Practitioners Experience When Specifying Runtime Monitors

	4 Discussion and Conclusion
	4.1 Related Literature
	4.2 Threats to Validity
	4.3 Conclusion

	References

	A Requirements Engineering Perspective to AI-Based Systems Development: A Vision Paper
	1 Introduction
	2 Background
	3 RE4AI: Vision and Roadmap
	4 Discussion
	References

	Out-of-Distribution Detection as Support for Autonomous Driving Safety Lifecycle
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Autonomous Emergency Breaking Use-Case
	3.2 Machine Learning Development
	3.3 Remaining Lifecyle

	4 Conclusion and Outlook
	References

	Crowd RE
	Automatically Classifying Kano Model Factors in App Reviews
	1 Introduction
	2 Background and Related Work
	2.1 Kano Model
	2.2 Crowd-Based RE and App Store Analytics
	2.3 NLP and Machine Learning

	3 Research Methodology
	3.1 Studied Datasets and Manual Labeling
	3.2 General Data Preprocessing
	3.3 Evaluation Strategy

	4 Kano Factor Classifier
	4.1 Baseline Algorithms
	4.2 Transfer Learning Classifiers

	5 Results
	5.1 RQ1: Performance of Classifiers
	5.2 RQ2: Generalization to Unseen Data
	5.3 RQ3: Correlation Between Misclassification and Human Disagreement

	6 Discussion
	6.1 Impact in Practice
	6.2 Impact for Research
	6.3 Threats to Validity

	7 Conclusions
	References

	Data-Driven Persona Creation, Validation, and Evolution
	1 Introduction
	2 Research Road Map
	3 The Persona Engine – A Solution Idea
	3.1 Extending the Data Storage and Combination Component
	3.2 Adding a ``Persona Explorer and Visualizer'' Component
	3.3 Anticipated Challenges

	4 Our Solution at Work – A Fictional Use Case
	5 Preliminary Results of the Interview Study
	5.1 Results
	5.2 Threats to Validity

	6 Conclusion
	References

	Towards a Cross-Country Analysis of Software-Related Tweets
	1 Introduction
	2 Related Work
	3 Study Methodology
	4 Results
	5 Discussion
	6 Conclusion
	References

	Integrating Implicit Feedback into Crowd Requirements Engineering – A Research Preview
	1 Introduction
	2 Project SMART-AGE and Terminology
	3 Related Work
	4 Crowd-Based Requirements Elicitation Via the CREII Method
	4.1 Collecting Pull Feedback by Using Adaptive Questions
	4.2 Bundling of Explicit Feedback

	5 Application of CREII in SMART-AGE
	References

	RE in Practice
	Authoring, Analyzing, and Monitoring Requirements for a Lift-Plus-Cruise Aircraft
	1 Introduction
	2 Background
	3 The Lift Plus Cruise Case Study
	4 Writing Requirements for LPC
	4.1 Initial Formalization
	4.2 Refinement Using Realizability Checking
	4.3 Reasoning About the System's Environment

	5 Generation of Run-Time Monitors
	6 Lessons Learned
	7 Conclusion
	References

	Knowns and Unknowns: An Experience Report on Discovering Tacit Knowledge of Maritime Surveyors
	1 Introduction
	2 Methods
	2.1 Description of DNV
	2.2 Data Collection and Analysis Procedures

	3 Findings
	3.1 Requirements Elicitation at DNV
	3.2 Known Unknowns: What Developers Know They Don't Know
	3.3 Unknown Knowns: What Developers Don't Know, but Users Do
	3.4 Unknown Unknowns: What Neither Developers nor Users Know

	4 Discussion and Conclusion
	References

	Feel It, Code It: Emotional Goal Modelling for Gender-Inclusive Design
	1 Introduction
	2 Background and Related Work
	3 Capturing Disparities in Employees Experience
	3.1 Study Setup
	3.2 Experience Mapping

	4 Applying Emotional Goal Modelling to Design Inclusive Processes
	4.1 Modelling
	4.2 Mapping Emotional Goals and Personal Values
	4.3 Threats to Validity

	5 Findings and Lessons Learned
	5.1 Findings
	5.2 Lessons Learned
	5.3 Implications for RE

	6 Conclusion
	References

	A Product Owner’s Navigation in Power Imbalance Between Business and IT: An Experience Report
	1 Introduction
	2 The Company
	3 The Project
	3.1 History
	3.2 Project Organization

	4 The Product Owner Role
	4.1 Division of Work with Requirements
	4.2 User Stories, Verification and Definition of Done

	5 Quantitative Analysis of the Product Backlog
	6 IT Product Owner Observations and Lesson Learned
	6.1 Mismatch Between Organizational Pressure and Product Owner Capacity
	6.2 Insufficient Trade-Offs Between Business Demands and Software Quality
	6.3 Lesson Learned: Power Imbalance Between Business and IT is Too Big and Must Be Addressed

	7 Related Work
	8 Conclusions
	References

	Eliciting Security Requirements – An Experience Report
	1 Introduction
	2 Setup of Our Threat Modeling Workshops
	3 Observations
	4 Lessons Learned
	5 Threats to Validity
	6 Conclusion
	References

	Author Index

